Cosine Similarity
这是该公众号第一次推送算法题
选择了一个完全没有难度的题目,该题目也是lintcode的第一题,示例题目。相信选取这个题目会是一个良好的开端。
题目如下:
Cosine similarity is a measure of similarity between two vectors of an inner product space that measures the cosine of the angle between them. The cosine of 0° is 1, and it is less than 1 for any other angle.
See wiki: Cosine Similarity
Here is the formula:
Given two vectors A and B with the same size, calculate the cosine similarity.
Return 2.0000
if cosine similarity is invalid (for example A = [0] and B = [0]).
Example
Given A = [1, 2, 3], B = [2, 3 ,4].
Return 0.9926.
Given A = [0], B = [0].
Return 2.0000
余弦相似度是机器学习中的一个重要概念,在Mahout等MLlib中有几种常用的相似度计算方法,如欧氏相似度,皮尔逊相似度,余弦相似度,Tanimoto相似度等。其中,余弦相似度是其中重要的一种。
代码如下:
java版
class Solution {
/**
* @param A: An integer array.
* @param B: An integer array.
* @return: Cosine similarity.
*/
public double cosineSimilarity(int[] A, int[] B) {
// write your code here
if(A.length != B.length)
return 2.0;
double ab = 0, a = 0, b = 0;
for(int i = 0; i < A.length; i++){
a += A[i] * A[i];
b += B[i] * B[i];
ab += A[i] * B[i];
}
if(a == 0 || b == 0)
return 2.0;
return ab / Math.sqrt(a) / Math.sqrt(b);
}
}
如果觉得文章有帮助的话,不妨关注一下本公众号,当然也希望能帮作者推广一下,更多人关注我也会更有动力,在此先谢过了。
关注我