6. SPSS基本使用:因子分析

一、实际操作

因子分析几乎可以等同于主成分分析,本质就是PCA降维,因子数太多减少因子数。示例如下

image.png

先导入老师给的数据,然后点击分析-降维-因子分析
点击描述按钮-选择KMO和球形检验

image.png

点击提取-方法选择主成分-同时勾选碎石图
特征值这里一般是大于1,然后因子数可以按照自己的需求加。

image.png

旋转方法一般选择最大方差法,勾选载荷图,迭代次数选择30次,
实际当中有可能旋转次数不够出不来结果,我们就把迭代次数勾选上去。

image.png

因子得分这里勾选保存为变量,然后勾选上得分系数矩阵

image.png

选项这里勾选上按照大小排序,排除小系数,绝对值这里选0.3,我们看看后续的结果再来分析。

二、结果分析

image.png

操作后生成结果如上,KMO这里需要大于0.7,这样子的话各个因子的相互度才满足因子分析的条件,有相关性。

image.png

公因子方差部分提取部分看提取了多少比例的信息,以q1_1为例,0.581相当于提取了58.1%的信息。只要这个比例大于0.5就还可以,提取效果不错。

image.png

总方差解释,总计那里是特征值,因为前面是根据特征值>1来提取的, 所以提取了8个因子,但是累计只有66%,不满足80%,所以这些因子不够代表所有的数据,至少要满足80%以上才能代表。
旋转载荷平方和那里的总计是特征值,方差百分比是方差贡献率,这两个值越大代表每个因子的代表性越大。累积代表所有因子的总体代表程度。


image.png

碎石图主要是统计上用来选择特征值个数的,如果上图中,可以看到应该选择4个特征值,但是老师前面讲了8个因子代表性都不够,别说4个特征值,所以实际过程中可能不太实用。可以把这个东西写在报告里面。

image.png

成分矩阵这里(其实挺老师讲应该叫载荷矩阵??),是没有旋转前的因子组成。因为之前在选项中进行了排序,并且,去掉了小于0.3(其实0.5以下都没啥用),所以如上可以看到因子1主要有问题5_3 到问题3_4组成的。这里需要重点关注下0.4几的这种数据,譬如0.490(小于0.5的用处比较小)。另外老师提到了q7_3,在因子2和因子3中都是0.4几,那么如何判断它到底属于哪个因子,可以看旋转后的。

image.png

旋转后的q7_3是0.734归到了因子2,和因子3没有关系了。
可以发现,每个维度的第3个问题都是归到因子2,每个维度的第5个题目都是归到因子1.

1)另外,我们可以到到q3_3 叫做跨因子现象,在两个因子中都是>0.5,这是不允许的,我们需要删掉这个题目或者进行修改

image.png

2)另外q3_2, 跟所有的因子相关性都小于0.5,建议删除。

3)还有就是drop_q1_3,因子8只有它的相关性大于0.5,所以因子8完全由drop_q1_3一个因子代表,这个情况需要删除。

1)2)3)这三种特殊情况需要注意,都需要对题目进行修改或者删除。

image.png

这个组件图一般用二维的,看起来比较清晰,三维的不是动画看不清,因为这个图表示的就是各个题目离哪几个因子比较近。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 1 因子分析概念 因子分析是一种数据简化的技术。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并...
    羋学僧阅读 23,912评论 9 12
  • Chapter 13 Factor Analysis 本篇是第十三章,内容是因子分析。这篇博客的完整内容包含各类数...
    G小调的Qing歌阅读 22,457评论 0 11
  • 当你没有大树可以依靠的时候,唯一可以选择的是自己长成一棵树。 因为妈妈在我很小的时候就生病了,我失去了依靠,并且还...
    敏淇凝瑞旗袍阅读 120评论 0 4
  • 在我印象中旅行最深刻的地方是第一次一个人去上海,在家上网查车票,订车票,联系旅行团等等,第二天坐火车到达上海,在这...
    笑笑微阅读 300评论 0 1
  • 2019-7-1 《玉堂春·树下》 绿色养眼碧层层。 影动幻形无声。 久坐林下无心情。 树虫落衣襟。 行道树丛荫密...
    wzhenxu阅读 184评论 0 2