「笔记」用Python进行文本情感分析

声明

原文来自: http://news.ifeng.com/a/20170628/51337227_0.shtml

因原文格式比较乱,所以我按照自己的方式进行了整理。结果整理完之后才发现王树义老师的简书里面也同样有这篇文章,附上地址 https://www.jianshu.com/p/d50a14541d01 。若本文侵犯了您的权益,请随时与我联系,给您带来的不便还请谅解!

定义

文本情感分析(sentiment analysis)也称为意见挖掘,是指用自然语言处理、文本挖掘以及计算机语言学等方法来识别和提取原素材中的主观信息。

适用场景

商品评论挖掘、电影推荐、股市预测……

早在2010年,Jonhan Bollen 等人就在《Twitter mood predicts the stock market》一文中提出利用 Twitter 中的公开信息进行情感分析,以此来对股市的涨落做预测,准确率高达87.6%!并且他们认为,只要能获得大量实时社交媒体文本数据,并进行相应的情感分析就能保证得到较好预测效果。

当前,随着电子商务的飞速发展,我们可以获得的文本数据非常多,例如大众点评、豆瓣和亚马逊等等。

NLTK

Natural Language Toolkit,自然语言处理工具包,在NLP领域中,最常使用的一个Python库。NLTK由Steven Bird和Edward Loper在宾夕法尼亚大学计算机和信息科学系开发。

系统环境说明

本文的实验环境是 Python 3.6.1 |Anaconda 4.4.0 (64-bit),Win10

英文情感分析例子

工具

TextBlob

安装依赖包

pip install textblob
python -m textblob.download_corpora

代码

from textblob import TextBlob

text = "I am happy today. I feel sad today."
blob = TextBlob(text)

# 拆分句子
blob.sentences  # [Sentence("I am happy today."), Sentence("I feel sad today.")]

# polarity代表情感极性,取值范围是[-1, 1],-1代表完全负面,1代表完全正面
# subjectivity代表主观性程度
blob.sentences[0].sentiment  # Sentiment(polarity=0.8, subjectivity=1.0)
blob.sentences[1].sentiment  # Sentiment(polarity=-0.5, subjectivity=1.0)

# 对整段话进行情感分析
blob.sentiment  # Sentiment(polarity=0.15000000000000002, subjectivity=1.0)

中文情感分析例子

工具

SnowNLP

安装依赖包

pip install snownlp

代码

from snownlp import SnowNLP

text = u"我今天很快乐。我今天很愤怒。"  # 使用Unicode编码
s = SnowNLP(text)
s.sentences  # ['我今天很快乐', '我今天很愤怒']

SnowNLP(s.sentences[0]).sentiments  # 0.971889316039116
SnowNLP(s.sentences[1]).sentiments  # 0.07763913772213482
s.sentiments  # 0.7237619924203508

说明
SnowNLPTextBlob 的计分方法不同。SnowNLP 的情感分析取值,表达的是“这句话代表正面情感的概率”。也就是说,对“我今天很愤怒”一句,SnowNLP 认为,它表达正面情感的概率很低很低。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容