Redis为什么这么快?

Redis为什么这么快?

概述

Redis的QPS可达10w/s,可简单看下图所示


Redis快的原因.png

基于内存实现

内存的速度比磁盘读写快很多。Redis是基于内存存储实现的数据库,相对于数据存储在磁盘的数据库,省去了I/O的消耗。类似Mysql等磁盘数据库,需要建立索引等方式加快查询速度,而Redis可直接操作内存。

高效的数据结构

MySQL索引为了提高效率,选择了B+树的数据结构。实现合理的数据结构,可以加快速度。Redis的数据结构和内部编码图:


Redis的数据结构和内部编码图.png

SDS简单动态字符串

SDS简单动态字符串.png
struct sdshdr { //SDS简单动态字符串
    int len;    //记录buf中已使用的空间
    int free;   // buf中空闲空间长度
    char buf[]; //存储的实际内容
}

字符串长度处理
在C语言中,获取字符串长度需要遍历,时间复杂度是0(n);在Redis,可直接获取len的值,时间复杂度是0(1)。

减少内存重新分配的次数
在C语言中,修改一个字符串,需要重新分配内存,修改越频繁,内存分配就越频繁,而分配内存是会消耗性能的。而在Redis中,SDS提供了两种优化策略:空间预分配和惰性空间释放。

  1. 空间预分配:当SDS简单动态字符串修改和空间扩充时,除了分配必需的内存空间,还会额外分配未使用的空间。分配规则如下:
  • len的长度<1M,则额外分配与len相同长度的未使用空间。比如len=50,重新分配后,buf 的实际长度会变为50(已使用空间)+50(额外空间)+1(空字符)=101。
  • len的长度>1M,程序将分配1M未使用空间。
  1. 惰性空间释放:当SDS缩短时,不是回收多余内存空间,而是用free记录下多余空间。后续再有修改操作,直接使用free中的空间,减少内存分配。

哈希

Redis 作为一个K-V的内存数据库,它使用用一张全局的哈希来保存所有的键值对。这张哈希表,有多个哈希桶组成,哈希桶中的entry元素保存了*key和*value指针,其中*key指向了实际的键,*value指向了实际的值。

全局哈希表.png

哈希表类似Java的HashMap,快速查找键值对复杂度为O(1):通过key计算哈希值,找到对应的位置,然后定位entry,在entry找到对应数据
1.哈希冲突解决:使用链表哈希,当对不同的key哈希得到同一个哈希桶时,使用链表保存,彼此间指针连接
哈希冲突.png

2.冲突激烈,哈希链表长解决:Redis 会对哈希表做rehash操作(增加哈希桶),减少冲突。为了rehash更高效,Redis还默认使用了两个全局哈希表,一个用于当前使用,称为主哈希表,一个用于扩容,称为备用哈希表。

跳跃表

跳跃表是Redis特有的数据结构,在链表的基础上,增加多级索引,提高查找效率。跳跃表的简单原理图如下:


跳跃表简单原理图.png
  • 每一层都是有序的链表,最底层链表包含了所有元素。
  • 跳跃表支持平均O(logN),最坏 O(N)复杂度的节点查找,还可以通过顺序性操作批量处理节点。

压缩列表ziplist

压缩列表ziplist是列表键和字典键的的底层实现之一。由一系列特殊编码的内存块构成列表, 一个ziplist可以包含多个entry, 每个entry可以保存一个长度受限的字符数组或者整数,如下:


ZipList压缩列表.png
  • zlbytes :记录整个压缩列表占用的内存字节数
  • zltail: 尾节点至起始节点的偏移量
  • zllen : 记录整个压缩列表包含的节点数量
  • entryX: 压缩列表包含的各个节点
  • zlend : 特殊值0xFF(十进制255),用于标记压缩列表末端

由于内存是连续分配的,所以遍历速度很快。

合理的数据编码

Redis是使用对象(redisObject)来表示键值,Redis 中创建一个键值对时,至少创建两个对象,一个对象是键对象,另一个是值对象。

typedef struct redisObject{
    //类型
   unsigned type:4;
   //编码
   unsigned encoding:4;
   //指向底层数据结构的指针
   void *ptr;
    //...
 }robj;

redisObject中,type 对应的是对象类型,包含String对象、List对象、Hash对象、Set对象、zset对象。encoding 对应的是编码。

  • String:如果存储数字的话,是用int类型的编码;如果存储非数字,小于等于39字节的字符串,是embstr;大于39个字节,则是raw编码。
  • List:如果列表的元素个数小于512个,列表每个元素的值都小于64字节(默认),使用ziplist编码,否则使用linkedlist编码
  • Hash:哈希类型元素个数小于512个,所有值小于64字节的话,使用ziplist编码,否则使用hashtable编码。
  • Set:如果集合中的元素都是整数且元素个数小于512个,使用intset编码,否则使用hashtable编码。
  • Zset:当有序集合的元素个数小于128个,每个元素的值小于64字节时,使用ziplist编码,否则使用skiplist(跳跃表)编码

合理的线程模型

单线程模型:避免了线程上下文切换

Redis是单线程的,其实是指Redis的网络IO和键值对读写是由一个线程来完成的。但Redis的其他功能,比如持久化、异步删除、集群数据同步等等,实际是由额外的线程执行的。

Redis的单线程模型,避免了CPU不必要的上下文切换和竞争锁的消耗。也正因为是单线程,如果某个命令执行过长(如hgetall命令),会造成阻塞。Redis是面向快速执行场景的内存数据库,所以要慎用如lrange和smembers、hgetall等命令。

I/O 多路复用

  • I/O :网络 I/O
  • 多路 :多个网络连接
  • 复用:复用同一个线程。
  • IO多路复用是一种同步IO模型,实现了一个线程可以监视多个文件句柄;一旦某个文件句柄就绪,就能够通知应用程序进行相应的读写操作;而没有文件句柄就绪时,就会阻塞应用程序,交出cpu。
    I/O 多路复用.png

    多路I/O复用技术可以让单个线程高效的处理多个连接请求,而Redis使用epoll作为I/O多路复用技术的实现。并且Redis自身的事件处理模型将epoll中的连接、读写、关闭都转换为事件,不在网络I/O上浪费过多的时间。

虚拟内存机制

虚拟内存机制就是暂时把不经常访问的数据(冷数据)从内存交换到磁盘中,从而腾出宝贵的内存空间用于其它需要访问的数据(热数据)。通过VM功能可以实现冷热数据分离,使热数据仍在内存中、冷数据保存到磁盘。这样就可以避免因为内存不足而造成访问速度下降的问题。

Redis直接自己构建了VM机制 ,不会像一般的系统会调用系统函数处理,会浪费一定的时间去移动和请求。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容