Nuttx相关的历史文章
介绍
信号是在软件层次上对中断机制的模拟,在原理上说,一个任务接收到一个信号,与CPU接收到中断请求是一致的。信号是异步的,任务不必通过任何操作来等待信号的到达,它甚至不知道信号何时会到达。
信号的来源包括:
- 硬件来源,比如按键触发
- 软件来源,比如kill,raise等系统函数,比如一些非法运算操作等
任务和信号
Nuttx
为进程和线程提供了信号接口,可以在任务上下文中或在任务上下文之间,通过信号这种异步通信机制,来改变任务的控制流。在任何一个任务中或中断处理函数中,可以给指定TASK ID的其他任务发送信号。接收到信号的任务将在具有优先级时执行任务指定的信号处理函数。信号处理程序是一个用户提供的函数,它绑定到一个特定的信号,并在接收到信号时执行任何必要的操作。默认情况下,没有对任何信号设置预定义动作,所有信号的默认操作都是忽略(如果用户没有提供信号处理函数),从这个意义上说,所有Nuttx
默认情况下都是实时信号。
任务组
Nuttx
既支持任务task
,又支持线程pthreads
。task
和pthreads
的主要区别在于task
之间的独立性要高得多。task
可以创建pthreads
,这些pthreads
将共享task
的资源。主task
线程和它所包含的pthreads
,一起被称为任务组,在Nuttx
中使用任务组来模拟POSIX
的进程。
发送信号给多线程任务组
多线程任务组中的信号行为是复杂的。
Nuttx
使用任务组模拟进程,并遵循POSIX
规则进行信号发送。通常,当向一个任务组发送信号时,需要向创建该任务组的主task
线程的ID
号发送(实际上,其他任务不应该知道该任务组中创建的内部线程ID
)。任务组会记住该ID
(即使主任务线程退出)。
当向一个多线程任务组发送信号时,会出现以下情况:
- 当任务组接收到一个信号,那么任务组中只有一个不阻塞该信号的不确定线程会接收到信号。
- 当任务组接收到一个信号,并且有多个线程在等待该信号,有且只有一个不确定的线程将接收该信号。
可以使用
sigprocmask()
或pthread_sigmask()
接口来屏蔽信号。信号被屏蔽后,将不会在具有屏蔽该信号的线程中接收到。在创建新的线程时,新线程将会继承父线程的信号掩码,因此如果在一个线程上阻塞某个信号,那么在它所创建的线程中也会阻塞该信号。
可以通过信号掩码来控制哪个线程接收信号,例如,创建一个线程,该线程的唯一目的是捕获某个特定的信号并且做出响应:在主任务中阻塞信号;这时该信号会在任务组中被所有的线程阻塞。在一个“信号处理线程”中,使能了信号,这个线程将是唯一接收信号的线程。
API接口
本来想一上来就分析数据结构,看了一圈源代码,发现还是先从应用层的API入手,有个全面的认识后,再逐层去分析底层的原理。
API如下:
int sigemptyset(sigset_t *set) ; /* 清空set信号集, 排除所有信号 */
int sigfillset(sigset_t *set); /* 置位set信号集,包含所有信号 */
int sigaddset(sigset_t *set, int signo); /* 将信号signo添加进set信号集 */
int sigdelset(sigset_t *set, int signo); /* 将signo信号从set信号集中删除 */
int sigismember(const sigset_t *set, int signo); /* 判断signo信号是否属于set信号集 */
int sigaction(int signo, const struct sigaction *act,
struct sigaction *oact); /* 信号安装函数,将sigaction与一个特定的信号进行绑定,sigaction结构体在下文会介绍 */
int sigignore(int signo); /* 忽略signo信号 */
void (*sigset(int signo, void (*disp)(int)))(int); /* 改变signo信号的配置, disp可以是SIG_DFL、SIG_IGN,或者信号处理Handler */
int sigprocmask(int how, const sigset_t *set, sigset_t *oset); /* 根据how的策略,来改变当前阻塞的信号集 */
int sighold(int signo); /* 将signo信号添加进进程的阻塞信号集 */
int sigrelse(int signo); /* 将sigo信号从进程的阻塞信号集中移除 */
int sigpending(sigset_t *set); /* 返回在阻塞期间收到的阻塞信号的集合 */
int sigsuspend(const sigset_t *set); /* 在接收到某个信号之前,临时用set替换进程的信号掩码,并暂停进程执行,直到收到信号为止 */
int sigpause(int signo); /* 将signo信号从信号掩码中移除,暂停进程,直到收到信号为止 */
int sigwaitinfo(const sigset_t *set, struct siginfo *info); /* 调用的sigtimedwait */
int sigtimedwait(const sigset_t *set, struct siginfo *info,
const struct timespec *timeout); /* 将set作为阻塞信号集,当多个信号到达时,返回最小的返回,如果没有信号到达,在timeout时间内,进程会暂停,直到收到信号或者时间到期 */
int sigqueue (int tid, int signo, union sigval value); /* 向tid Task发送signo信号,信号携带value数据 */
int kill(pid_t pid, int sig); /* 向pid Task发送sig信号 */
int pause(void); /* 暂停当前调用线程,直到收到一个non-blocked信号 */
从上述接口中可以看出,大致可以分为以下几类:
- 对信号集/信号本身的操作:比如信号集的清空与置位、将信号从信号集中删除、增加信号到信号集中、判断信号是否属于信号集等
- 对信号的行为响应:比如首先需要信号安装、设置信号的Handler、忽略某个信号、阻塞某些信号、在接收到某些信号前暂停当前进程(会涉及到任务的切换)等
- 发送信号:向某个特定的task发送信号,信号中还能携带数据
数据结构
数据结构又分为两部分:Kernel部分和User部分,其中Kernel部分也需要用到User部分的定义。
User部分,定义在
include/signal.h
中,主要描述信号的基本数据结构以及API接口
- 信号集的定义,总共包含32中信号,Nuttx提供了部分信号,其余的用户可以自定义
/* This defines a set of 32 signals (numbered 0 through 31).
* REVISIT: Signal 0 is, however, not generally usable since that value has
* special meaning in some circumstances (e.g., kill()).
*/
typedef uint32_t sigset_t; /* Bit set of 32 signals */
#define __SIGSET_T_DEFINED 1
/* Signal set management definitions and macros. */
#define NULL_SIGNAL_SET ((sigset_t)0x00000000)
#define ALL_SIGNAL_SET ((sigset_t)0xffffffff)
#define MIN_SIGNO 0
#define MAX_SIGNO 31
#define GOOD_SIGNO(s) ((((unsigned)(s))<=MAX_SIGNO))
#define SIGNO2SET(s) ((sigset_t)1 << (s))
/* A few of the real time signals are used within the OS. They have
* default values that can be overridden from the configuration file. The
* rest are all user signals.
*
* The signal number zero is wasted for the most part. It is a valid
* signal number, but has special meaning at many interfaces (e.g., Kill()).
*
* These are the semi-standard signal definitions:
*/
#define SIGUSR1 1 /* User signal 1 */
#define SIGUSR2 2 /* User signal 2 */
#define SIGALRM 3 /* Default signal used with POSIX timers (used only */
/* no other signal is provided) */
#define SIGCHLD 4 /* Used by child threads to signal parent thread */
#define SIGPOLL 5 /* Sent when an asynchronous I/O event occurs */
/* The following are non-standard signal definitions */
#define SIGCONDTIMEDOUT 16 /* Used in the implementation of pthread_cond_timedwait */
#define SIGWORK 17 /* Used to wake up the work queue */
- 信号事件的定义,主要用于向消息队列发送信号,通知某个task队列中已经有消息了
/* Values for the sigev_notify field of struct sigevent */
#define SIGEV_NONE 0 /* No asynchronous notification is delivered */
#define SIGEV_SIGNAL 1 /* Notify via signal,with an application-defined value */
#ifdef CONFIG_SIG_EVTHREAD
#define SIGEV_THREAD 3 /* A notification function is called */
#endif
/* This defines the type of the siginfo si_value field */
union sigval
{
int sival_int; /* Integer value */
FAR void *sival_ptr; /* Pointer value */
};
/* This structure contains elements that define a queue signal. The following is
* used to attach a signal to a message queue to notify a task when a message is
* available on a queue
*/
#ifdef CONFIG_CAN_PASS_STRUCTS
typedef CODE void (*sigev_notify_function_t)(union sigval value);
#else
typedef CODE void (*sigev_notify_function_t)(FAR void *sival_ptr);
#endif
struct sigevent
{
uint8_t sigev_notify; /* Notification method: SIGEV_SIGNAL, SIGEV_NONE, or SIGEV_THREAD */
uint8_t sigev_signo; /* Notification signal */
union sigval sigev_value; /* Data passed with notification */
#ifdef CONFIG_SIG_EVTHREAD
sigev_notify_function_t sigev_notify_function; /* Notification function */
FAR pthread_attr_t *sigev_notify_attributes; /* Notification attributes (not used) */
#endif
};
- 信号的定义,描述信号的内部细节信息,用于在信号Handler中的参数传递
/* These are the possible values of the signfo si_code field */
#define SI_USER 0 /* Signal sent from kill, raise, or abort */
#define SI_QUEUE 1 /* Signal sent from sigqueue */
#define SI_TIMER 2 /* Signal is result of timer expiration */
#define SI_ASYNCIO 3 /* Signal is the result of asynch IO completion */
#define SI_MESGQ 4 /* Signal generated by arrival of a message on an */
/* empty message queue */
#define CLD_EXITED 5 /* Child has exited (SIGCHLD only) */
#define CLD_KILLED 6 /* Child was killed (SIGCHLD only) */
#define CLD_DUMPED 7 /* Child terminated abnormally (SIGCHLD only) */
#define CLD_TRAPPED 8 /* Traced child has trapped (SIGCHLD only) */
#define CLD_STOPPED 9 /* Child has stopped (SIGCHLD only) */
#define CLD_CONTINUED 10 /* Stopped child had continued (SIGCHLD only) */
/* The following types is used to pass parameters to/from signal handlers */
struct siginfo
{
uint8_t si_signo; /* Identifies signal */
uint8_t si_code; /* Source: SI_USER, SI_QUEUE, SI_TIMER, SI_ASYNCIO, or SI_MESGQ */
uint8_t si_errno; /* Zero or errno value associated with signal */
union sigval si_value; /* Data passed with signal */
#ifdef CONFIG_SCHED_HAVE_PARENT
pid_t si_pid; /* Sending task ID */
int si_status; /* Exit value or signal (SIGCHLD only). */
#endif
};
typedef struct siginfo siginfo_t;
#define __SIGINFO_T_DEFINED 1
- 信号action的定义,当信号deliver的时候,Task所采取的行动,其中sigaction中sa_mask位域,表示的是当Handler在执行期间,需要阻塞的信号
/* struct sigaction flag values */
#define SA_NOCLDSTOP (1 << 0) /* Do not generate SIGCHILD when
* children stop (ignored) */
#define SA_SIGINFO (1 << 1) /* Invoke the signal-catching function
* with 3 args instead of 1
* (always assumed) */
#define SA_NOCLDWAIT (1 << 2) /* If signo=SIGCHLD, exit status of child
* processes will be discarded */
/* Special values of of sa_handler used by sigaction and sigset. They are all
* treated like NULL for now. This is okay for SIG_DFL and SIG_IGN because
* in NuttX, the default action for all signals is to ignore them.
*/
#define SIG_ERR ((_sa_handler_t)-1) /* And error occurred */
#define SIG_DFL ((_sa_handler_t)0) /* Default is SIG_IGN for all signals */
#define SIG_IGN ((_sa_handler_t)0) /* Ignore the signal */
#define SIG_HOLD ((_sa_handler_t)1) /* Used only with sigset() */
/* Non-standard convenience definition of signal handling function types.
* These should be used only internally within the NuttX signal logic.
*/
typedef CODE void (*_sa_handler_t)(int signo);
typedef CODE void (*_sa_sigaction_t)(int signo, FAR siginfo_t *siginfo,
FAR void *context);
/* The following structure defines the action to take for given signal */
struct sigaction
{
union
{
_sa_handler_t _sa_handler;
_sa_sigaction_t _sa_sigaction;
} sa_u;
sigset_t sa_mask;
int sa_flags;
};
/* Definitions that adjust the non-standard naming */
#define sa_handler sa_u._sa_handler
#define sa_sigaction sa_u._sa_sigaction
Kernle部分,定义在include/sched/signal/signal.h中,主要描述了Kernel中是如何实现信号机制的
- 描述一个信号的action的结构,指针flink将sigactq链接起来管理,系统注册一个信号,底层将用一个sigactq结构体来对应
/* The following defines the sigaction queue entry */
struct sigactq
{
FAR struct sigactq *flink; /* Forward link */
struct sigaction act; /* Sigaction data */
uint8_t signo; /* Signal associated with action */
};
typedef struct sigactq sigactq_t;
- 描述pending信号(未决信号)的结构,其中info中包括信号的详细信息,该信号会通过flink链接管理
/* The following defines the queue structure within each TCB to hold pending
* signals received by the task. These are signals that cannot be processed
* because: (1) the task is not waiting for them, or (2) the task has no
* action associated with the signal.
*/
struct sigpendq
{
FAR struct sigpendq *flink; /* Forward link */
siginfo_t info; /* Signal information */
uint8_t type; /* (Used to manage allocations) */
};
typedef struct sigpendq sigpendq_t;
- 描述需要被执行的信号节队列点结构,当任务注册了信号并接收到信号后,会分配一个信号队列节点,将该节点挂载到任务tcb->sigpendactionq链表上等待运行信号服务函数。其中action指向信号处理函数,mask用于当信号处理函数运行时阻塞其他信号,info是信号的详细信息
/* The following defines the queue structure within each TCB to hold queued
* signal actions that need action by the task
*/
struct sigq_s
{
FAR struct sigq_s *flink; /* Forward link */
union
{
void (*sighandler)(int signo, siginfo_t *info, void *context);
} action; /* Signal action */
sigset_t mask; /* Additional signals to mask while the
* the signal-catching function executes */
siginfo_t info; /* Signal information */
uint8_t type; /* (Used to manage allocations) */
};
typedef struct sigq_s sigq_t;
上述三种结构,
struct sigactq
描述信号的action,struct sigpendq
描述未决的信号,struct sigq_s
描述的是信号与action的对应关系,可以认为是一个纽带,将信号和Action绑定到一起。这几个结构的名字让我懵逼了好久。还有更懵逼的在下边。
基于上述的三个结构体,系统维护了5个全局队列,用于最终信号的处理,信号处理过程中,这三个结构体的节点,将在这5个全局队列中进行流动,有点类似于任务调度中任务队列的意思。
- 存放action的队列,存放
sigactq_t
,用于Action资源的分配
/* The g_sigfreeaction data structure is a list of available signal action
* structures.
*/
extern sq_queue_t g_sigfreeaction;
- 存放信号队列节点的队列,存放
sigq_t
,此时Action和信号已经完成了绑定,用于sigq_t
资源的分配。存放信号队列节点的队有两种:用于普通分配的队列和用于中断中分配的队列。
/* The g_sigpendingaction data structure is a list of available pending
* signal action structures.
*/
extern sq_queue_t g_sigpendingaction;
/* The g_sigpendingirqaction is a list of available pending signal actions
* that are reserved for use by interrupt handlers.
*/
extern sq_queue_t g_sigpendingirqaction;
- 存放未决信号的队列,存放
sigpendq_t
,用于未决信号资源的分配。同2相似,它也存在两种队列:用于普通分配的队列和用于中断中分配的队列。
/* The g_sigpendingsignal data structure is a list of available pending
* signal structures.
*/
extern sq_queue_t g_sigpendingsignal;
/* The g_sigpendingirqsignal data structure is a list of available pending
* signal structures that are reserved for use by interrupt handlers.
*/
extern sq_queue_t g_sigpendingirqsignal;
那么这三种数据结构以及几个全局队列又是怎么对应到Task数据结构中的呢,先看看Task中与信号相关的位域吧,有两部分:
第一部分:
struct tcb_s
{
...
#ifndef CONFIG_DISABLE_SIGNALS
sigset_t sigprocmask; /* Signals that are blocked */
sigset_t sigwaitmask; /* Waiting for pending signals */
sq_queue_t sigpendactionq; /* List of pending signal actions */
sq_queue_t sigpostedq; /* List of posted signals */
siginfo_t sigunbinfo; /* Signal info when task unblocked */
#endif
...
}
上述代码中位域介绍如下:
sigprocmask
:任务Tcb
的阻塞信号集,如果某个信号属于这个阻塞信号集,那么发送该信号到Tcb
时,信号被阻塞。除非该信号是等待的信号,或者Tcb
任务取消了对该信号的阻塞,信号才会被deliver。sigwaitmask
:该任务等待的信号集。sigpendactionq
:用于挂载该任务需要服务的信号节点sigq_t
,任务开始执行时,sigpendactionq
中的节点所代表的信号处理函数将被运行。在信号处理函数运行前,该信号的sigq_t
节点将从sigpendactionq
队列中转移到sigpostedq
队列中。sigpostedq
:用于挂载该任务正在执行信号处理函数的信号节点sigq_t
,当信号处理函数执行完毕后,信号节点sigq_t
将被从队列中移除,然后被释放。sigunbinfo
:用于记录信号信息
从上可以看出,上述结构中的
sigpendactionq
会存放sigq_t
资源,也就是已经完成了信号和Action绑定后的节点。显然,sigq_t
资源会在tcb->sigpendactionq
字段指向的队列和g_sigpendingaction
/g_sigpendingirqaction
之间流动。
第二部分,在
struct task_group_s
中,如果定义了TASK_GROUP的话就会包含。
struct task_group_s
{
...
#ifndef CONFIG_DISABLE_SIGNALS
/* POSIX Signal Control Fields ************************************************/
sq_queue_t tg_sigactionq; /* List of actions for signals */
sq_queue_t tg_sigpendingq; /* List of pending signals */
#endif
...
}
上述两个位域含义很清晰,一个用于放置Action,一个用于放置信号。对应到前边的五个全局队列,可以知道:
sigactq_t
资源在task_group->tg_sigactionq
指向的队列和g_sigfreeaction
队列中流动;sigpendq_t
资源在task_group->tg_sigpendingq
指向的队列和g_sigpendingsignal
/g_sigpendingirqsignal
队列中流动。
到这里为止,基本上将所有的数据结构及资源捋清了。注册信号就是关联一个Task和某个信号处理函数,当Task接收到信号后,对应信号的信号处理函数被运行。而涉及到这个处理流程的所有资源(上述结构体描述),就是在这些资源队列中进行流转。
来一张图吧
注册信号
通过
int sigaction(int signo, FAR const struct sigaction *act, FAR struct sigaction *oact)
接口可以查询和设置信号关联的处理方式。在该函数中,完成了以下几个功能:
- 将
act
对应的sigaction
设置进本task
中,并将之前的sigaction
以oact
的形式传递出来。- 根据
signo
查询task_group->tg_sigactionq
中是否有对应的sigactq_t
,没有的话从系统g_sigfreeaction
链表中分配一个。- 根据
act
对应的sigaction
中Handler
的处理方式(忽略信号,还是提供处理函数),更新sigactq_t
结构,最终将sigactq_t
的结构插入到task_group->tg_sigactionq
中。
整个过程,就是将sigaction注册进Task中的链表中,还是直接看源代码来得更清晰,代码里有详尽的注释,理解起来比较容易。
/****************************************************************************
* Name: sigaction
*
* Description:
* This function allows the calling process to examine and/or specify the
* action to be associated with a specific signal.
*
* The structure sigaction, used to describe an action to be taken, is
* defined to include the following members:
*
* - sa_u.sa_handler: Pointer to a signal-catching function
* - sa_u.sa_sigaction: Alternative form of the signal-catching function
* - sa_mask: An additional set of signals to be blocked during execution
* of a signal catching function
* - sa_flags. Special flags to affect the behavior of a signal.
*
* If the argument 'act' is not NULL, it points to a structure specifying
* the action to be associated with the specified signal. If the argument
* 'oact' is not NULL, the action previously associated with the signal
* is stored in the location pointed to by the argument 'oact.'
*
* When a signal is caught by a signal-catching function installed by
* sigaction() function, a new signal mask is calculated and installed for
* the duration of the signal-catching function. This mask is formed by
* taking the union of the current signal mask and the value of the
* sa_mask for the signal being delivered and then including the signal
* being delivered. If and when the user's signal handler returns, the
* original signal mask is restored.
*
* Once an action is installed for a specific signal, it remains installed
* until another action is explicitly requested by another call to sigaction().
*
* Parameters:
* sig - Signal of interest
* act - Location of new handler
* oact - Location to store only handler
*
* Return Value:
* 0 (OK), or -1 (ERROR) if the signal number is invalid.
* (errno is not set)
*
* Assumptions:
*
* POSIX Compatibility:
* - There are no default actions so the special value SIG_DFL is treated
* like SIG_IGN.
* - All sa_flags in struct sigaction of act input are ignored (all
* treated like SA_SIGINFO). The one exception is if CONFIG_SCHED_CHILD_STATUS
* is defined; then SA_NOCLDWAIT is supported but only for SIGCHLD
*
****************************************************************************/
int sigaction(int signo, FAR const struct sigaction *act, FAR struct sigaction *oact)
{
FAR struct tcb_s *rtcb = this_task();
FAR struct task_group_s *group;
FAR sigactq_t *sigact;
/* Since sigactions can only be installed from the running thread of
* execution, no special precautions should be necessary.
*/
DEBUGASSERT(rtcb != NULL && rtcb->group != NULL);
group = rtcb->group;
/* Verify the signal number */
if (!GOOD_SIGNO(signo))
{
set_errno(EINVAL);
return ERROR;
}
/* Find the signal in the signal action queue */
sigact = sig_findaction(group, signo);
/* Return the old sigaction value if so requested */
if (oact)
{
if (sigact)
{
COPY_SIGACTION(oact, &sigact->act);
}
else
{
/* There isn't an old value */
oact->sa_u._sa_handler = NULL;
oact->sa_mask = NULL_SIGNAL_SET;
oact->sa_flags = 0;
}
}
/* If the argument act is a null pointer, signal handling is unchanged;
* thus, the call can be used to enquire about the current handling of
* a given signal.
*/
if (!act)
{
return OK;
}
#if defined(CONFIG_SCHED_HAVE_PARENT) && defined(CONFIG_SCHED_CHILD_STATUS)
/* Handle a special case. Retention of child status can be suppressed
* if signo == SIGCHLD and sa_flags == SA_NOCLDWAIT.
*
* POSIX.1 leaves it unspecified whether a SIGCHLD signal is generated
* when a child process terminates. In NuttX, a SIGCHLD signal is
* generated in this case; but in some other implementations, it may not
* be.
*/
if (signo == SIGCHLD && (act->sa_flags & SA_NOCLDWAIT) != 0)
{
irqstate_t flags;
/* We do require a critical section to muck with the TCB values that
* can be modified by the child thread.
*/
flags = enter_critical_section();
/* Mark that status should be not be retained */
rtcb->group->tg_flags |= GROUP_FLAG_NOCLDWAIT;
/* Free all pending exit status */
group_removechildren(rtcb->group);
leave_critical_section(flags);
}
#endif
/* Handle the case where no sigaction is supplied (SIG_IGN) */
if (act->sa_u._sa_handler == SIG_IGN)
{
/* Do we still have a sigaction container from the previous setting? */
if (sigact)
{
/* Yes.. Remove it from signal action queue */
sq_rem((FAR sq_entry_t *)sigact, &group->tg_sigactionq);
/* And deallocate it */
sig_releaseaction(sigact);
}
}
/* A sigaction has been supplied */
else
{
/* Do we still have a sigaction container from the previous setting?
* If so, then re-use for the new signal action.
*/
if (!sigact)
{
/* No.. Then we need to allocate one for the new action. */
sigact = sig_allocateaction();
/* An error has occurred if we could not allocate the sigaction */
if (!sigact)
{
set_errno(ENOMEM);
return ERROR;
}
/* Put the signal number in the queue entry */
sigact->signo = (uint8_t)signo;
/* Add the new sigaction to signal action queue */
sq_addlast((FAR sq_entry_t *)sigact, &group->tg_sigactionq);
}
/* Set the new sigaction */
COPY_SIGACTION(&sigact->act, act);
}
return OK;
}
发送信号
发送信号以
kill()
函数来解释是再合适不过了。
在kill()
函数中,根据传进来的PID号,找到对应的Task,并向该Task发送信号,关键代码如下:
int kill(pid_t pid, int signo)
{
...
/* Keep things stationary through the following */
sched_lock();
/* Create the siginfo structure */
info.si_signo = signo;
info.si_code = SI_USER;
info.si_errno = EINTR;
info.si_value.sival_ptr = NULL;
#ifdef CONFIG_SCHED_HAVE_PARENT
info.si_pid = rtcb->pid;
info.si_status = OK;
#endif
/* Send the signal */
ret = sig_dispatch(pid, &info);
sched_unlock();
...
}
调用到
sig_dispatch()
接口,完成信号的分发,而在sig_dispatch()接口中,又将调用sig_tcbdispatch()
接口,最核心的部分在于sig_tcbdispatch()
,事实上上层信号最终的分发都在这个接口中实现。
sig_tcbdispatch()
函数,主要完成以下几点功能:
- 如果分发的信号在目标
Task
中是是masked
,而且Task
的状态没有变成等待该信号的话,就将信号添加进pending
队列中,也就是task_group->tg_sigpendingq
队列中;而如果Task
的状态变成了需要等待这个之前mask
掉的信号,这时候就调用up_unblock_task()
接口,完成任务的切换。- 如果分发的信号在目标
Task
中是unmask
,此时需要调用sig_queueaction()
接口,将一个sigq_t
结构添加进tcb->sigpendactionq
队列中。当然,在sig_queueaction()
接口中,会去从上文中提到过的全局队列中获取sigq_t
结构资源。加入到tcb->sigpendactionq
队列后,调用up_schedule_sigaction()
接口,该接口主要是更新Task
对应的Tcb
中的内容,最终调用up_unblock_task()
进行任务切换的时候,能去处理信号。
最终信号发送成功,有两件事完成了:1)在目标
Task
的tcb->sigpendactionq
队列中,成功的添加了sigq_t
结构,该结构完成了信号和Action
的匹配;2)更新了目标Task
的tcb->xcp
中的内容,更新完这个后,当完成任务切换的时候,Context Restore
的时候会将tcb->xcp
中的内容恢复到寄存器中,因此也就能跳转到信号处理函数中执行。
关键代码如下:
/****************************************************************************
* Name: sig_tcbdispatch
*
* Description:
* All signals received the task (whatever the source) go through this
* function to be processed. This function is responsible for:
*
* - Determining if the signal is blocked.
* - Queuing and dispatching signal actions
* - Unblocking tasks that are waiting for signals
* - Queuing pending signals.
*
* This function will deliver the signal to the task associated with
* the specified TCB. This function should *not* typically be used
* to dispatch signals since it will *not* follow the group signal
* deliver algorithms.
*
* Returned Value:
* Returns 0 (OK) on success or a negated errno value on failure.
*
****************************************************************************/
int sig_tcbdispatch(FAR struct tcb_s *stcb, siginfo_t *info)
{
...
/************************* MASKED SIGNAL HANDLING ************************/
/* Check if the signal is masked -- if it is, it will be added to the list
* of pending signals.
*/
if (sigismember(&stcb->sigprocmask, info->si_signo))
{
/* Check if the task is waiting for this pending signal. If so, then unblock it.
* This must be performed in a critical section because signals can be queued
* from the interrupt level.
*/
flags = enter_critical_section();
if (stcb->task_state == TSTATE_WAIT_SIG &&
sigismember(&stcb->sigwaitmask, info->si_signo))
{
memcpy(&stcb->sigunbinfo, info, sizeof(siginfo_t));
stcb->sigwaitmask = NULL_SIGNAL_SET;
up_unblock_task(stcb);
leave_critical_section(flags);
}
/* Its not one we are waiting for... Add it to the list of pending
* signals.
*/
else
{
leave_critical_section(flags);
ASSERT(sig_addpendingsignal(stcb, info));
}
}
/************************ UNMASKED SIGNAL HANDLING ***********************/
else
{
#ifdef CONFIG_SMP
int cpu;
#endif
/* Queue any sigaction's requested by this task. */
ret = sig_queueaction(stcb, info);
/* Deliver of the signal must be performed in a critical section */
flags = enter_critical_section();
#ifdef CONFIG_SMP
/* If the thread is running on another CPU, then pause that CPU. We can
* then setup the for signal delivery on the running thread. When the
* CPU is resumed, the signal handler will then execute.
*/
cpu = sched_cpu_pause(stcb);
#endif /* CONFIG_SMP */
/* Then schedule execution of the signal handling action on the
* recipient's thread.
*/
up_schedule_sigaction(stcb, sig_deliver);
#ifdef CONFIG_SMP
/* Resume the paused CPU (if any) */
if (cpu >= 0)
{
/* I am not yet sure how to handle a failure here. */
DEBUGVERIFY(up_cpu_resume(cpu));
}
#endif /* CONFIG_SMP */
/* Check if the task is waiting for an unmasked signal. If so, then
* unblock it. This must be performed in a critical section because
* signals can be queued from the interrupt level.
*/
if (stcb->task_state == TSTATE_WAIT_SIG)
{
memcpy(&stcb->sigunbinfo, info, sizeof(siginfo_t));
stcb->sigwaitmask = NULL_SIGNAL_SET;
up_unblock_task(stcb);
}
leave_critical_section(flags);
/* If the task neither was waiting for the signal nor had a signal
* handler attached to the signal, then the default action is
* simply to ignore the signal
*/
/*********************** OTHER SIGNAL HANDLING ***********************/
/* If the task is blocked waiting for a semaphore, then that task must
* be unblocked when a signal is received.
*/
...
}
传递信号
信号最终的deliver,需要理解两个函数,以及一个过程。两个函数指的是
up_schedule_sigaction()
和up_sigdeliver()
,在arch/arm/src/arm
下实现,一个过程指的是Context切换的过程,参考我之前的一篇文章:Nuttx Task Schedule
先来看看
up_schedule_sigaction()
函数,在函数中又分为几种情况:1)发送的信号是给当前任务的,且当前任务不在中断上下文中;2)发送的信号是给当前任务的,且当前任务在中断上下文中;3)发送的信号是给其他任务的。
- 发送给当前任务,且不在中断中,直接调用
sig_deliver()
函数,完成信号的deliver。- 发送给当前任务,且在中断中,需要先将中断上下文中保存的
PC
和CPSR
值保存到tcb->xcp.saved_pc
和tcb->xcp.saved_cpsr
中,然后再将up_sigdeliver()
函数指针值及新设置的CPSR
覆盖中断上下文中的PC
和CPSR
值,因此当中断返回的时候,中断上下文将恢复到寄存器中,此时便会去执行up_sigdeliver()
函数,在up_sigdeliver()
中调用sig_deliver()
完成信号处理。这时候可能会有疑问,那之前的中断上下文被破坏了,怎么恢复呢?别忘了tcb->xcp.saved_pc
和tcb->xcp.saved_cpsr
,这个结构保存了最开始的中断上下文,因此在up_sigdeliver()
执行中,会去恢复原来的中断上下文。- 发送给其他任务,处理的方式与在中断中发送给当前任务的情况类似。
/****************************************************************************
* Name: up_schedule_sigaction
*
* Description:
* This function is called by the OS when one or more
* signal handling actions have been queued for execution.
* The architecture specific code must configure things so
* that the 'igdeliver' callback is executed on the thread
* specified by 'tcb' as soon as possible.
*
* This function may be called from interrupt handling logic.
*
* This operation should not cause the task to be unblocked
* nor should it cause any immediate execution of sigdeliver.
* Typically, a few cases need to be considered:
*
* (1) This function may be called from an interrupt handler
* During interrupt processing, all xcptcontext structures
* should be valid for all tasks. That structure should
* be modified to invoke sigdeliver() either on return
* from (this) interrupt or on some subsequent context
* switch to the recipient task.
* (2) If not in an interrupt handler and the tcb is NOT
* the currently executing task, then again just modify
* the saved xcptcontext structure for the recipient
* task so it will invoke sigdeliver when that task is
* later resumed.
* (3) If not in an interrupt handler and the tcb IS the
* currently executing task -- just call the signal
* handler now.
*
****************************************************************************/
void up_schedule_sigaction(struct tcb_s *tcb, sig_deliver_t sigdeliver)
{
irqstate_t flags;
sinfo("tcb=0x%p sigdeliver=0x%p\n", tcb, sigdeliver);
/* Make sure that interrupts are disabled */
flags = enter_critical_section();
/* Refuse to handle nested signal actions */
if (!tcb->xcp.sigdeliver)
{
/* First, handle some special cases when the signal is
* being delivered to the currently executing task.
*/
sinfo("rtcb=0x%p CURRENT_REGS=0x%p\n", this_task(), CURRENT_REGS);
if (tcb == this_task())
{
/* CASE 1: We are not in an interrupt handler and
* a task is signalling itself for some reason.
*/
if (!CURRENT_REGS)
{
/* In this case just deliver the signal now. */
sigdeliver(tcb);
}
/* CASE 2: We are in an interrupt handler AND the
* interrupted task is the same as the one that
* must receive the signal, then we will have to modify
* the return state as well as the state in the TCB.
*
* Hmmm... there looks like a latent bug here: The following
* logic would fail in the strange case where we are in an
* interrupt handler, the thread is signalling itself, but
* a context switch to another task has occurred so that
* CURRENT_REGS does not refer to the thread of this_task()!
*/
else
{
/* Save the return lr and cpsr and one scratch register
* These will be restored by the signal trampoline after
* the signals have been delivered.
*/
tcb->xcp.sigdeliver = sigdeliver;
tcb->xcp.saved_pc = CURRENT_REGS[REG_PC];
tcb->xcp.saved_cpsr = CURRENT_REGS[REG_CPSR];
/* Then set up to vector to the trampoline with interrupts
* disabled
*/
CURRENT_REGS[REG_PC] = (uint32_t)up_sigdeliver;
CURRENT_REGS[REG_CPSR] = SVC_MODE | PSR_I_BIT | PSR_F_BIT;
/* And make sure that the saved context in the TCB
* is the same as the interrupt return context.
*/
up_savestate(tcb->xcp.regs);
}
}
/* Otherwise, we are (1) signaling a task is not running
* from an interrupt handler or (2) we are not in an
* interrupt handler and the running task is signalling
* some non-running task.
*/
else
{
/* Save the return lr and cpsr and one scratch register
* These will be restored by the signal trampoline after
* the signals have been delivered.
*/
tcb->xcp.sigdeliver = sigdeliver;
tcb->xcp.saved_pc = tcb->xcp.regs[REG_PC];
tcb->xcp.saved_cpsr = tcb->xcp.regs[REG_CPSR];
/* Then set up to vector to the trampoline with interrupts
* disabled
*/
tcb->xcp.regs[REG_PC] = (uint32_t)up_sigdeliver;
tcb->xcp.regs[REG_CPSR] = SVC_MODE | PSR_I_BIT | PSR_F_BIT;
}
}
leave_critical_section(flags);
}
当调用
up_schedule_sigaction()
接口,更新了tcb->xcp
的值后,当遇到任务切换点的时候,比如up_unblock_task()
,就有可能去执行信号处理函数了,这个就是up_sigdeliver()
函数的作用了。
up_sigdeliver()
函数主要完成以下几个功能:
- 在栈上边regs中将现场保存好,并且将之前tcb->xcp.saved_pc和tcb->xcp.saved_cpsr中的值恢复到regs栈上边对应位置。
- 恢复中断状态
- 调用信号处理Handler进行处理
- 调用up_fullcontextrestore(regs),进行任务的恢复。
可以看出,这个过程很像中断处理的过程,因此信号的处理机制,有的地方称为软中断处理机制
还是放上代码吧:
/****************************************************************************
* Name: up_sigdeliver
*
* Description:
* This is the a signal handling trampoline. When a signal action was
* posted. The task context was mucked with and forced to branch to this
* location with interrupts disabled.
*
****************************************************************************/
void up_sigdeliver(void)
{
struct tcb_s *rtcb = this_task();
uint32_t regs[XCPTCONTEXT_REGS];
sig_deliver_t sigdeliver;
/* Save the errno. This must be preserved throughout the signal handling
* so that the user code final gets the correct errno value (probably
* EINTR).
*/
int saved_errno = rtcb->pterrno;
board_autoled_on(LED_SIGNAL);
sinfo("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
ASSERT(rtcb->xcp.sigdeliver != NULL);
/* Save the real return state on the stack. */
up_copyfullstate(regs, rtcb->xcp.regs);
regs[REG_PC] = rtcb->xcp.saved_pc;
regs[REG_CPSR] = rtcb->xcp.saved_cpsr;
/* Get a local copy of the sigdeliver function pointer. we do this so that
* we can nullify the sigdeliver function pointer in the TCB and accept
* more signal deliveries while processing the current pending signals.
*/
sigdeliver = rtcb->xcp.sigdeliver;
rtcb->xcp.sigdeliver = NULL;
/* Then restore the task interrupt state */
up_irq_restore(regs[REG_CPSR]);
/* Deliver the signals */
sigdeliver(rtcb);
/* Output any debug messages BEFORE restoring errno (because they may
* alter errno), then disable interrupts again and restore the original
* errno that is needed by the user logic (it is probably EINTR).
*/
sinfo("Resuming\n");
(void)up_irq_save();
rtcb->pterrno = saved_errno;
/* Then restore the correct state for this thread of execution. */
board_autoled_off(LED_SIGNAL);
up_fullcontextrestore(regs);
}
上面讨论的两个函数,都会最终调用到
sig_deliver()
函数,完成最终实际上的Handler处理,sig_deliver()
函数处理那些被链接到tcb->sigpendactionq
中的sigq_t
,将sigq_t
结构转移到tcb->sigpostedq
队列中,紧接着执行信号处理函数。处理完当前的信号后,紧接着调用sig_unmaskpendingsignal()
函数,查询tcb_group->tg_sigpendingq
中是否还有pending
的信号需要去处理,并调用sig_tcbdispatch()
继续进行分发。最终处理完本次任务后,将sigq_t
结构体从任务tcb->sigpostedq
中移除,并释放该结构。
代码如下:
/****************************************************************************
* Name: sig_deliver
*
* Description:
* This function is called on the thread of execution of the signal
* receiving task. It processes all queued signals then returns.
*
****************************************************************************/
void sig_deliver(FAR struct tcb_s *stcb)
{
FAR sigq_t *sigq;
FAR sigq_t *next;
sigset_t savesigprocmask;
irqstate_t flags;
int saved_errno;
sched_lock();
/* Save the thread errno. When we finished dispatching the
* signal actions and resume the task, the errno value must
* be unchanged by the operation of the signal handling. In
* particular, the EINTR indication that says that the task
* was reawakened by a signal must be retained.
*/
saved_errno = stcb->pterrno;
for (sigq = (FAR sigq_t *)stcb->sigpendactionq.head; (sigq); sigq = next)
{
next = sigq->flink;
sinfo("Sending signal sigq=0x%x\n", sigq);
/* Remove the signal structure from the sigpendactionq and place it
* in the sigpostedq. NOTE: Since signals are processed one at a
* time, there should never be more than one signal in the sigpostedq
*/
flags = enter_critical_section();
sq_rem((FAR sq_entry_t *)sigq, &(stcb->sigpendactionq));
sq_addlast((FAR sq_entry_t *)sigq, &(stcb->sigpostedq));
leave_critical_section(flags);
/* Call the signal handler (unless the signal was cancelled)
*
* Save a copy of the old sigprocmask and install the new
* (temporary) sigprocmask. The new sigprocmask is the union
* of the current sigprocmask and the sa_mask for the signal being
* delivered plus the signal being delivered.
*/
savesigprocmask = stcb->sigprocmask;
stcb->sigprocmask = savesigprocmask | sigq->mask | SIGNO2SET(sigq->info.si_signo);
/* Deliver the signal. In the kernel build this has to be handled
* differently if we are dispatching to a signal handler in a user-
* space task or thread; we have to switch to user-mode before
* calling the task.
*/
#if defined(CONFIG_BUILD_PROTECTED) || defined(CONFIG_BUILD_KERNEL)
if ((stcb->flags & TCB_FLAG_TTYPE_MASK) != TCB_FLAG_TTYPE_KERNEL)
{
/* The sigq_t pointed to by sigq resides in kernel space. So we
* cannot pass a reference to sigq->info to the user application.
* Instead, we will copy the siginfo_t structure onto the stack.
* We are currently executing on the stack of the user thread
* (albeit temporarily in kernel mode), so the copy of the
* siginfo_t structure will be accessible by the user thread.
*/
siginfo_t info;
memcpy(&info, &sigq->info, sizeof(siginfo_t));
up_signal_dispatch(sigq->action.sighandler, sigq->info.si_signo,
&info, NULL);
}
else
#endif
{
/* The kernel thread signal handler is much simpler. */
(*sigq->action.sighandler)(sigq->info.si_signo, &sigq->info,
NULL);
}
/* Restore the original sigprocmask */
stcb->sigprocmask = savesigprocmask;
/* Now, handle the (rare?) case where (a) a blocked signal was
* received while the signal handling executed but (b) restoring the
* original sigprocmask will unblock the signal.
*/
sig_unmaskpendingsignal();
/* Remove the signal from the sigpostedq */
flags = enter_critical_section();
sq_rem((FAR sq_entry_t *)sigq, &(stcb->sigpostedq));
leave_critical_section(flags);
/* Then deallocate it */
sig_releasependingsigaction(sigq);
}
stcb->pterrno = saved_errno;
sched_unlock();
}
Nuttx OS的学习和相关文档更新持续中...