Swift 算法实战之路:排序


以前的文章中,我们主要是在讲数据结构:比如数组、链表、队列、树。这些数据结构都是了解Swift和算法的基础。从今以后的文章,我们将更多的关注于通用算法,这次我们就来聊聊排序。这次的主要内容有:

  • 基本概念
  • 排序实战

基本概念

我们平常用的排序算法一般就以下几种:

名称 时间复杂度 空间复杂度 是否稳定
冒泡排序 O(n^2) O(1)
插入排序 O(n^2) O(1)
选择排序 O(n^2) O(1)
堆排序 O(nlogn) O(1)
归并排序 O(nlogn) O(n)
快速排序 O(nlogn) O(1)
桶排序 O(n) O(k)

这些算法具体的定义本文不再赘述。一般情况下,好的排序算法性能是O(nlogn),坏的性能是O(n^2)。本文在此用swift示范实现归并排序:

func mergeSort(array: [Int]) -> [Int] {
  var helper = Array(count: array.count, repeatedValue: 0)
  var array = array
  mergeSort(&array, &helper, 0, array.count - 1)
  return array
}

func mergeSort(inout array: [Int], inout _ helper: [Int], _ low: Int, _ high: Int) {
  guard low < high else {
    return
  }
  
  let middle = (high - low) / 2 + low
  mergeSort(&array, &helper, low, middle)
  mergeSort(&array, &helper, middle + 1, high)
  merge(&array, &helper, low, middle, high)
}

func merge(inout array: [Int], inout _ helper: [Int], _ low: Int, _ middle: Int, _ high: Int) {
  // copy both halves into a helper array
  for i in low ... high {
    helper[i] = array[i]
  }
  
  var helperLeft = low
  var helperRight = middle + 1
  var current = low
  
  // iterate through helper array and copy the right one to original array
  while helperLeft <= middle && helperRight <= high {
    if helper[helperLeft] <= helper[helperRight] {
      array[current] = helper[helperLeft]
      helperLeft += 1
    } else {
      array[current] = helper[helperRight]
      helperRight += 1
    }
    current += 1
  }
  
  // handle the rest
  guard middle - helperLeft >= 0 else {
    return
  }
  for i in 0 ... middle - helperLeft {
    array[current + i] = helper[helperLeft + i]
  }
}

表格中有一个特例是桶排序,它是将输入的数组分配到一定数量的空桶中,每个空桶再单独排序。当输入的数组是均匀分配时,桶排序的时间复杂度为O(n)。举个微软的面试题来当例子:

有三种颜色(红,黄,蓝)的球若干,要求将所有红色的球放在黄色球的前面,最后放上所有的蓝色球。

这道题目最直接的解法就是桶排序。首先第一次遍历,统计有多少个红色球(假设x个),多少个黄色球(假设y个),和多少个蓝色球(假设z个)。然后再一次遍历,数组前部x个位置填充红色球,中间y个位置放上对应数量的黄色球,最后z个位置再放上蓝色球。

另外解释一下稳定的意思:相等的键值,如果排过序后与原来未排序的次序相同,则称此排序算法为稳定。举个例子:

// 原数组
[[2, 1], [1,3], [1,4]]

// 排序算法一
[[1,3], [1,4], [2, 1]]
// 排序算法二
[[1,4], [1,3], [2, 1]]

我们注意到排序算法一和二的区别就在于对[1, 3], [1, 4]这两个元素的处理。排序算法一中,这两个元素位置与原数组相同,故称其为稳定算法。而排序算法二则是不稳定算法。

Swift中,排序的使用如下:

// 以升序排列为例,原数组可改变
array.sort

// 以降序排列为例,原数组不可改变
newArray = array.sorted(by: >)

// 字典键值排序示例
let keys = Array(map.keys)
let sortedKeys = keys.sorted() {
  return map[$0]! > map[$1]!
}

在其他语言比如Java中,其自带的sort函数是用归并排序实现的。而在Swift源代码中,sort函数采用的是一种内审算法(IntroSort)。它由堆排序、插入排序、快速排序三种算法构成,依据输入的深度相应选择最佳的算法来完成。本文关注的重点是实战,所以不做展开。对源代码感兴趣的朋友可以去Github读苹果的Swift的开源库。

排序实战

直接来看一道Facebook, Google, Linkedin都考过的面试题。

已知有很多会议,如果有这些会议时间有重叠,则将它们合并。
比如有一个会议的时间为3点到5点,另一个会议时间为4点到6点,那么合并之后的会议时间为3点到6点

解决算法题目第一步永远是把具体问题抽象化。这里每一个会议我们已知开始时间和结束时间,就可以写一个类来定义它:

public class MeetingTime {
  public var start: Int
  public var end: Int
  public init(_ start: Int, _ end: Int) {
    self.start = start
    self.end = end
  }
}

然后题目说已知有很多会议,就是说我们已知有一个MeetingTime的数组、所以题目就转化为写一个函数,输入为一个MeetingTime的数组,输出为一个将原数组中所有重叠时间都处理过的新数组。

func merge(meetingTimes: [MeetingTime]) -> [MeetingTime] {}

下面来分析一下题目怎么解。最基本的思路是遍历一次数组,然后归并所有重叠时间。举个例子:[[1, 3], [5, 6], [4, 7], [2, 3]]。这里我们可以发现[1, 3]和[2, 3]可以归并为[1, 3],[5, 6]和[4, 7]可以归并为[5, 7]。所以这里就提出一个要求:要将所有可能重叠的时间尽量放在一起,这样遍历的时候可以就可以从前往后一个接着一个的归并。于是很自然的想到 -- 按照会议开始的时间排序。

这里我们要对一个class进行排序,而且要自定义排序方法,在Swift中可以这样写:

meetingTimes.sortInPlace() {
  if $0.start != $1.start {
    return $0.start < $1.start
  } else {
    return $0.end < $1.end
  }
}

意思就是首先对开始时间进行升序排列,如果它们相同,就比较结束时间。

有了排好顺序的数组,要得到新的归并后的结果数组,我们只需要在遍历的时候,每次比较原数组(排序后)当前会议时间与结果数组中当前的会议时间,假如它们有重叠,则归并;如果没有,则直接添加进结果数组之中。所有代码如下:

func merge(meetingTimes: [MeetingTime]) -> [MeetingTime] {
  // 处理特殊情况
  guard meetingTimes.count > 1 else {
    return meetingTimes
  }

  // 排序  
  var meetingTimes = meetingTimes.sort() {
    if $0.start != $1.start {
      return $0.start < $1.start
    } else {
      return $0.end < $1.end
    }
  }

  // 新建结果数组
  var res = [MeetingTime]()
  res.append(meetingTimes[0])

  // 遍历排序后的原数组,并与结果数组归并     
  for i in 1..<meetingTimes.count {
    let last = res[res.count - 1]
    let current = meetingTimes[i]
    if current.start > last.end {
      res.append(current)
    } else {
      last.end = max(last.end, current.end)
    }
  }
        
  return res
}

展望

排序在Swift中的应用场景很多,比如tableView中对于dataSource的处理。当然很多时候,排序都是和搜索,尤其是二分搜索配合使用。下期探讨搜索的时候,会对排序进行进一步拓展。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容