基于DVB-T的COFDM+16QAM+LDPC图传通信系统matlab仿真,包括载波同步,定时同步,信道估计

1.算法仿真效果

matlab2022a仿真结果如下(完整代码运行后无水印):



图传测试:



仿真操作步骤可参考程序配套的操作视频。


2.算法涉及理论知识概要

基于DVB-T的COFDM+16QAM+LDPC码通信链路是一种常用的数字视频广播系统,用于实现高效的传输和接收。该系统结合了正交频分复用(COFDM)、16QAM调制和低密度奇偶校验(LDPC)编码与解码技术。此外,系统中还包括载波同步、定时同步和信道估计模块,用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。本文将详细介绍基于DVB-T的COFDM+16QAM+LDPC码通信链路的系统原理、数学公式和各个环节的功能。


基于DVB-T的COFDM+16QAM+LDPC码通信链路通过COFDM技术将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。16QAM调制将每四个比特映射到一个复数点上,实现了16种相位和振幅的调制。LDPC编码是一种高效的纠错编码技术,可以提高系统的可靠性。载波同步、定时同步和信道估计模块用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。


COFDM调制

COFDM技术将整个频谱分成多个子载波,每个子载波之间正交传输。在每个OFDM符号中,数据被并行分配到不同的子载波上,并在频域上进行调制。COFDM调制可以通过快速傅里叶变换(FFT)将时域信号转换为频域信号。


16QAM调制

16QAM调制将每四个比特映射到一个复数点上,共有16种相位和振幅的调制方式。16QAM调制可以在一个符号周期内传输4个比特,实现高效的频谱利用。


LDPC编码和解码

LDPC编码是一种误码控制编码技术,通过稀疏校验矩阵构建编码器和解码器。编码器将输入数据和校验矩阵进行矩阵运算,生成编码后的数据。解码器使用迭代解码算法,通过消息传递的方式对接收到的编码数据进行解码。LDPC编码可以提供较高的纠错能力和编码效率。


载波同步

载波同步模块用于估计接收信号的载波频率偏移,并进行补偿。载波频率偏移会导致接收信号的相位发生变化,因此需要通过同步来保证正确的信号接收和解调。载波同步通过估计接收信号的相位差来计算载波频率偏移,然后通过反馈控制来调整本地振荡器的频率,使其与接收信号的载波频率保持同步。


定时同步

定时同步模块用于估计接收信号的定时偏移,并进行补偿。定时偏移会导致接收信号的采样时刻不准确,因此需要通过同步来恢复正确的采样时刻。定时同步通过计算接收信号的时钟边沿间隔的平方误差来估计定时偏移,然后通过反馈控制来调整采样时钟的相位,实现接收信号的定时同步。


信道估计

信道估计模块用于估计信道状态,以便在接收端进行合适的解调和解码。信道状态的估计可以通过接收信号的预处理和训练序列的发送来实现。根据接收信号和已知的训练序列,可以估计信道的衰落、噪声和多径效应等参数。


3.MATLAB核心程序

for i=1:l+1

%分散导频值

train_sym(i,pilot(i,:))=Burst*2.*(1/2-train(i,pilot(i,:)));

end


signal       = [1:carrier_count];

X3(:,signal) = 0;


for i=1:l+1

%插入分散导频

X3(i,pilot(i,:)) = train_sym(i,pilot(i,:));        

end

%保留原始插入分散导频

X3_SPCP           = X3(1:4,:);  

X3_SPCP(2:4,1)    = 0;

X3_SPCP(2:4,1705) = 0;

ScPilotX          = X3(1:4,:);      

.............................................................................................

%STEP2:整数倍载波频率同步

Np  = length(CP);

for i=1:12-1;

tmps=0;

for p=0:Np-1

tmps = tmps + X_modify1(i,45*p+1)*conj(X_modify1(i+1,45*p+1));

end

fl(i) = abs(tmps);

end

Fre_err   = mean(Ff)+mean(fl);

X_modify2 = X_modify1;

for i1=1:12

X_modify2(i1,:)=X_modify1(i1,:).*exp(-j*2*pi*(Fre_err));

end


subplot(426);

plot(X_modify2(Max_ip,:),'b.');

xlabel('In-Phase');

ylabel('Quadrature');

axis square

title('经定频偏修正的符号');


%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%信道估计

r_chestimation        = X_modify2(First_ip:First_ip+8-1,:);

X_modify2             = r_chestimation;

r_chestimation(:,TPS) = 0;


for m=1:8

for k=1:1705

if (abs(Data_index(m,k))>0.5)

r_chestimation(m,k)=0;

end

end

end

.......................................................................................

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%-------------LDPC解码 --------------------------------

hDemod    = modem.qamdemod('M', ModulateIndex, 'PhaseOffset', 0, 'SymbolOrder', 'Gray', 'OutputType', 'Bit');

msg_demod = demodulate(hDemod, S_data.');

msg_demod0= 2*msg_demod-1;

msg_dec   = [];

for i = 1:11

[vhatsd,nb_itersd,successsd] = func_Dec(msg_demod0(Ns*(i-1)+1:Ns*i),newH,N0,Max_iter);

tmps                         = vhatsd(Ms+1:Ns)';

msg_dec                      = [msg_dec;tmps];

end

[nChnlErrs BERChnl] = biterr(msg_enc(1:end/4), msg_demod);

[nCodErrs BERCoded] = biterr(msg_orig(1:length(msg_dec)), msg_dec);


NERR=NERR+nCodErrs;

NERR

Eind=Eind+BERCoded;


end

Err = [Err,Eind/ind];

end



figure;

semilogy(EbN0,Err,'b-o');

grid on

xlabel('EbN0');

ylabel('误码率');

save R1.mat EbN0 Err

0sj_034m

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,137评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,824评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,465评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,131评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,140评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,895评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,535评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,435评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,952评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,081评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,210评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,896评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,552评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,089评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,198评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,531评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,209评论 2 357

推荐阅读更多精彩内容