ElasticSearch 使用 Logstash 从 MySQL 中同步数据

概述

在生成业务常有将MySQL数据同步到ES的需求,如果需要很高的定制化,往往需要开发同步程序用于处理数据。但没有特殊业务需求,官方提供的logstash就很有优势了。
  在使用logstash我们应先了解其特性,再决定是否使用:

  • 无需开发,仅需安装配置logstash即可;
  • 凡是SQL可以实现的logstash均可以实现(本就是通过sql查询数据)
  • 支持每次全量同步或按照特定字段(如递增ID、修改时间)增量同步;
  • 同步频率可控,最快同步频率每分钟一次(如果对实效性要求较高,慎用);
  • 不支持被物理删除的数据同步物理删除ES中的数据(可在表设计中增加逻辑删除字段IsDelete标识数据删除)。

1、安装

前往官网下载logstash,下载地址www.elastic.co/downloads/l…,zip压缩包大约160M(觉得官网下载慢的可前往@zxiaofan的CSDN下载);
  程序目录:【windows】G:\ELK\logstash-6.5.4;【linux】/tomcat/logstash/logstash-6.5.4。
  下文统一以【程序目录】表示不同环境的安装目录。

2、配置

2.1、新建目录存放配置文件及mysql依赖包

在【程序目录】目录(\bin同级)新建mysql目录,将下载好的mysql-connector-java-5.1.34.jar放入此目录;
  在【程序目录】\mysql目录新建jdbc.conf文件,此文件将配置数据库连接信息、查询数据sql、分页信息、同步频率等核心信息。
  注意事项请查看注释信息。

2.2、单表同步配置

input {
    stdin {}
    jdbc {
        type => "jdbc"
         # 数据库连接地址
        jdbc_connection_string => "jdbc:mysql://192.168.1.1:3306/TestDB?characterEncoding=UTF-8&autoReconnect=true""
         # 数据库连接账号密码;
        jdbc_user => "username"
        jdbc_password => "pwd"
         # MySQL依赖包路径;
        jdbc_driver_library => "mysql/mysql-connector-java-5.1.34.jar"
         # the name of the driver class for mysql
        jdbc_driver_class => "com.mysql.jdbc.Driver"
         # 数据库重连尝试次数
        connection_retry_attempts => "3"
         # 判断数据库连接是否可用,默认false不开启
        jdbc_validate_connection => "true"
         # 数据库连接可用校验超时时间,默认3600S
        jdbc_validation_timeout => "3600"
         # 开启分页查询(默认false不开启);
        jdbc_paging_enabled => "true"
         # 单次分页查询条数(默认100000,若字段较多且更新频率较高,建议调低此值);
        jdbc_page_size => "500"
         # statement为查询数据sql,如果sql较复杂,建议配通过statement_filepath配置sql文件的存放路径;
         # sql_last_value为内置的变量,存放上次查询结果中最后一条数据tracking_column的值,此处即为ModifyTime;
         # statement_filepath => "mysql/jdbc.sql"
        statement => "SELECT KeyId,TradeTime,OrderUserName,ModifyTime FROM `DetailTab` WHERE ModifyTime>= :sql_last_value order by ModifyTime asc"
         # 是否将字段名转换为小写,默认true(如果有数据序列化、反序列化需求,建议改为false);
        lowercase_column_names => false
         # Value can be any of: fatal,error,warn,info,debug,默认info;
        sql_log_level => warn
         #
         # 是否记录上次执行结果,true表示会将上次执行结果的tracking_column字段的值保存到last_run_metadata_path指定的文件中;
        record_last_run => true
         # 需要记录查询结果某字段的值时,此字段为true,否则默认tracking_column为timestamp的值;
        use_column_value => true
         # 需要记录的字段,用于增量同步,需是数据库字段
        tracking_column => "ModifyTime"
         # Value can be any of: numeric,timestamp,Default value is "numeric"
        tracking_column_type => timestamp
         # record_last_run上次数据存放位置;
        last_run_metadata_path => "mysql/last_id.txt"
         # 是否清除last_run_metadata_path的记录,需要增量同步时此字段必须为false;
        clean_run => false
         #
         # 同步频率(分 时 天 月 年),默认每分钟同步一次;
        schedule => "* * * * *"
    }
}

filter {
    json {
        source => "message"
        remove_field => ["message"]
    }
    # convert 字段类型转换,将字段TotalMoney数据类型改为float;
    mutate {
        convert => {
            "TotalMoney" => "float"
        }
    }
}
output {
    elasticsearch {
         # host => "192.168.1.1"
         # port => "9200"
         # 配置ES集群地址
        hosts => ["192.168.1.1:9200", "192.168.1.2:9200", "192.168.1.3:9200"]
         # 索引名字,必须小写
        index => "consumption"
         # 数据唯一索引(建议使用数据库KeyID)
        document_id => "%{KeyId}"
    }
    stdout {
        codec => json_lines
    }
}
复制代码

2.3、多表同步

多表配置和单表配置的区别在于input模块的jdbc模块有几个type,output模块就需对应有几个type;

input {
    stdin {}
    jdbc {
         # 多表同步时,表类型区分,建议命名为“库名_表名”,每个jdbc模块需对应一个type;
        type => "TestDB_DetailTab"

         # 其他配置此处省略,参考单表配置
         # ...
         # ...
         # record_last_run上次数据存放位置;
        last_run_metadata_path => "mysql\last_id.txt"
         # 是否清除last_run_metadata_path的记录,需要增量同步时此字段必须为false;
        clean_run => false
         #
         # 同步频率(分 时 天 月 年),默认每分钟同步一次;
        schedule => "* * * * *"
    }
    jdbc {
         # 多表同步时,表类型区分,建议命名为“库名_表名”,每个jdbc模块需对应一个type;
        type => "TestDB_Tab2"
        # 多表同步时,last_run_metadata_path配置的路径应不一致,避免有影响;
         # 其他配置此处省略
         # ...
         # ...
    }
}

filter {
    json {
        source => "message"
        remove_field => ["message"]
    }
}

output {
    # output模块的type需和jdbc模块的type一致
    if [type] == "TestDB_DetailTab" {
        elasticsearch {
             # host => "192.168.1.1"
             # port => "9200"
             # 配置ES集群地址
            hosts => ["192.168.1.1:9200", "192.168.1.2:9200", "192.168.1.3:9200"]
             # 索引名字,必须小写
            index => "detailtab1"
             # 数据唯一索引(建议使用数据库KeyID)
            document_id => "%{KeyId}"
        }
    }
    if [type] == "TestDB_Tab2" {
        elasticsearch {
            # host => "192.168.1.1"
            # port => "9200"
            # 配置ES集群地址
            hosts => ["192.168.1.1:9200", "192.168.1.2:9200", "192.168.1.3:9200"]
            # 索引名字,必须小写
            index => "detailtab2"
            # 数据唯一索引(建议使用数据库KeyID)
            document_id => "%{KeyId}"
        }
    }
    stdout {
        codec => json_lines
    }
}
复制代码

3、启动运行

在【程序目录】目录执行以下命令启动:

【windows】
bin\logstash.bat -f mysql\jdbc.conf
【linux】
nohup ./bin/logstash -f mysql/jdbc_jx_moretable.conf &
复制代码

可新建脚本配置好启动命令,后期直接运行即可。
  在【程序目录】\logs目录会有运行日志

Note:
  5.x/6.X/7.x版本需要jdk8支持,如果默认jdk版本不是jdk8,那么需要在logstash或logstash.lib.sh的行首位置添加两个环境变量:

export JAVA_CMD="/usr/tools/jdk1.8.0_162/bin"
export JAVA_HOME="/usr/tools/jdk1.8.0_162/"
复制代码

开机自启动:

4、问题及解决方案

4.1、数据同步后,ES没有数据

output.elasticsearch模块的index必须是全小写;

4.2、增量同步后last_run_metadata_path文件内容不改变

如果lowercase_column_names配置的不是false,那么tracking_column字段配置的必须是全小写。

4.3、提示找不到jdbc_driver_library

2032 com.mysql.jdbc.Driver not loaded.
Are you sure you've included the correct jdbc driver in :jdbc_driver_library?
复制代码

检测配置的地址是否正确,如果是linux环境,注意路径分隔符是“/”,而不是“\”。

4.4、数据丢失

statement配置的sql中,如果比较字段使用的是大于“>”,可能存在数据丢失。
  假设当同步完成后last_run_metadata_path存放的时间为2019-01-30 20:45:30,而这时候新入库一条数据的更新时间也为2019-01-30 20:45:30,那么这条数据将无法同步。
  解决方案:将比较字段使用 大于等于“>=”。

4.5、数据重复更新

上一个问题“数据丢失”提供的解决方案是比较字段使用“大于等于”,但这时又会产生新的问题。
  假设当同步完成后last_run_metadata_path存放的时间为2019-01-30 20:45:30,而数据库中更新时间最大值也为2019-01-30 20:45:30,那么这些数据将重复更新,直到有更新时间更大的数据出现。
  当上述特殊数据很多,且长期没有新的数据更新时,会导致大量的数据重复同步到ES。
  何时会出现以上情况呢:①比较字段非“自增”;②比较字段是程序生成插入。
解决方案:

  • ①比较字段自增保证不重复或重复概率极小(比如使用自增ID或者数据库的timestamp),这样就能避免大部分异常情况了;
  • ②如果确实存在大量程序插入的数据,其更新时间相同,且可能长期无数据更新,可考虑定期更新数据库中的一条测试数据,避免最大值有大量数据。

4.6、容灾

logstash本身无法集群,我们常使用的组合ELK是通过kafka集群变相实现集群的。
  可供选择的处理方式:①使用任务程序推送数据到kafaka,由kafka同步数据到ES,但任务程序本身也需要容灾,并需要考虑重复推送的问题;②将logstash加入守护程序,并辅以第三方监控其运行状态。
  具体如何选择,需要结合自身的应用场景了。

4.7、海量数据同步

为什么会慢?logstash分页查询使用临时表分页,每条分页SQL都是将全集查询出来当作临时表,再在临时表上分页查询。这样导致每次分页查询都要对主表进行一次全表扫描。

SELECT * FROM (SELECT * FROM `ImageCN1`
 WHERE ModifyTime>= '1970-01-01 08:00:00'
 order by ModifyTime asc) AS `t1`
 LIMIT 5000 OFFSET 10000000;
复制代码

数据量太大,首次同步如何安全过渡同步?
  可考虑在statement对应的sql中加上分页条件,比如ID在什么范围,修改时间在什么区间,将单词同步的数据总量减少。先少量数据同步测试验证,再根据测试情况修改区间条件启动logstash完成同步。比如将SQL修改为:

SELECT
    * 
FROM
    `ImageCN1` 
WHERE
    ModifyTime < '2018-10-10 10:10:10' AND ModifyTime >= '1970-01-01 08:00:00' 
ORDER BY
    ModifyTime ASC
复制代码

当同步完ModifyTime<'2018-10-10 10:10:10'区间的数据在修改SQL同步剩余区间的数据。
  这样需要每次同步后就修改sql,线上运营比较繁琐,是否可以不修改sql,同时保证同步效率呢?SQL我们可以再修改下:

SELECT
    * 
FROM
    `ImageCN1` 
WHERE
    ModifyTime >= '1970-01-01 08:00:00' 
ORDER BY
    ModifyTime ASC 
    LIMIT 100000
复制代码

这样就能保证每次子查询的数据量不超过10W条,实际测试发现,数据量很大时效果很明显。

[SQL]USE XXXDataDB;
受影响的行: 0
时间: 0.001s

[SQL]
SELECT
    * 
FROM
    ( SELECT * FROM `ImageCN1` WHERE ModifyTime >= '1970-01-01 08:00:00' ORDER BY ModifyTime ASC ) AS `t1` 
    LIMIT 5000 OFFSET 900000;
受影响的行: 0
时间: 7.229s

[SQL]
SELECT
    * 
FROM
    ( SELECT * FROM `ImageCN1` WHERE ModifyTime >= '2018-07-18 19:35:10' ORDER BY ModifyTime ASC LIMIT 100000 ) AS `t1` 
    LIMIT 5000 OFFSET 90000
受影响的行: 0
时间: 1.778s
复制代码

测试可以看出,SQL不加limit 10W时,越往后分页查询越慢,耗时达到8S,而加了limit条件的SQL耗时稳定在2S以内。

作者:zxiaofan
链接:https://juejin.im/post/5daf2fa56fb9a04e054da1e3
来源:掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容