put
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
// Note: convention in all put/take/etc is to preset local var
// holding count negative to indicate failure unless set.
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
// 获取putLock,可中断
putLock.lockInterruptibly();
try {
/*
* Note that count is used in wait guard even though it is
* not protected by lock. This works because count can
* only decrease at this point (all other puts are shut
* out by lock), and we (or some other waiting put) are
* signalled if it ever changes from capacity. Similarly
* for all other uses of count in other wait guards.
*/
// notFull代表,链表未满
// 这里如果链表已满,当然该条件不满足就要等待
while (count.get() == capacity) {
notFull.await();
}
// 到这里,说明链表还有空位,加到尾部
enqueue(node);
c = count.getAndIncrement();
// 如果当前链表还没满,那么条件满足,所以要唤醒,无需再等待。
// 为什么是signal,而不是signalall呢,本来就是一个一个添加的,全部唤醒只是浪费CPU而已。
if (c + 1 < capacity)
notFull.signal();
} finally {
// 释放putLock
putLock.unlock();
}
// notEmpty条件代表,链表非空
// 如果c==0,说明链表中至少有一个node,那么条件满足,所以要唤醒,无需继续等待
if (c == 0)
signalNotEmpty();
}
offer
// 跟put类似,唯一不同是这里如果链表已满,那么会立即返回false
// 不会一直等到链表不满为止
public boolean offer(E e) {
if (e == null) throw new NullPointerException();
final AtomicInteger count = this.count;
// 当链表已满,那么直接返回false
if (count.get() == capacity)
return false;
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
// 当链表未满,那么继续执行入列的操作
if (count.get() < capacity) {
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
}
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return c >= 0;
}
poll
public E poll() {
final AtomicInteger count = this.count;
// 如果链表为空,直接返回null
if (count.get() == 0)
return null;
E x = null;
int c = -1;
final ReentrantLock takeLock = this.takeLock;
// 获取takelock
takeLock.lock();
try {
// 如果链表不为空,那么继续
if (count.get() > 0) {
// head出栈
x = dequeue();
c = count.getAndDecrement();
// 如果当前链表不为空,那么notEmpty条件满足,唤醒
if (c > 1)
notEmpty.signal();
}
} finally {
takeLock.unlock();
}
// 如果当前链表移除一个的情况下,至少有一个空位,notfull条件满足,有必要唤醒
if (c == capacity)
signalNotFull();
return x;
}
take
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
// 跟poll不同的是,这里如果链表为空的话,会一直等待
while (count.get() == 0) {
notEmpty.await();
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
peek
public E peek() {
if (count.get() == 0)
return null;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
// 返回头节点,但并不移除它
Node<E> first = head.next;
if (first == null)
return null;
else
return first.item;
} finally {
takeLock.unlock();
}
}
remove
public boolean remove(Object o) {
if (o == null) return false;
// 拿锁,putlock+takelock
fullyLock();
try {
// 从head往后遍历
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
// 如果能找到该对象,移除该节点
if (o.equals(p.item)) {
unlink(p, trail);
return true;
}
}
return false;
} finally {
// 解锁,takelock+putlock
fullyUnlock();
}
}
void fullyLock() {
putLock.lock();
takeLock.lock();
}
void fullyUnlock() {
takeLock.unlock();
putLock.unlock();
}
void unlink(Node<E> p, Node<E> trail) {
// assert isFullyLocked();
// p.next is not changed, to allow iterators that are
// traversing p to maintain their weak-consistency guarantee.
p.item = null;
// 跳过也就是孤立p节点
trail.next = p.next;
// 如果p是尾节点
if (last == p)
// 那么设置trail为尾节点,也就是移除p节点
last = trail;
// unlink的结果,当然链表未满,那么需要唤醒notFull条件
if (count.getAndDecrement() == capacity)
notFull.signal();
}