Java 并发系列(二):DCL — Double Check Lock

1. DCL 的目的

Double Check Lock 是多线程环境下为提高延迟初始化效率而被广泛使用的一种方式。我们常常会使用延迟初始化,以降低服务启动时间。

/**
 * code 1.1
 */
@NotThreadSafe
public class Client {
  private LazyInitClass instance ;
  public LazyInitClass getInstance() {
    if(instance == null)
      instance = new LazyInitClass("LazyInitClassFieldName") ;
    return instance ;
  }
}

代码

上面的代码是典型的延迟初始化的例子。当上面的例子暴露在多线程环境下时,便会出现各种问题。最明显的错误:方法会返回多个 LazyInitClass 对象。

/**
 * code 1.2
 */
@NotThreadSafe
public class Client {
    private LazyInitClass instance ;

    public synchronized LazyInitClass getInstance() {
        if(instance == null)
            instance = new LazyInitClass("LazyInitClassFieldName") ;

        return instance ;
    }
}

代码

上面的代码在方法层面使用了 synchronized 关键字,每次调用 getInstance 方法都进行同步,的确可以有效避免多线程环境下多次调用 getInstance 得到不同的 LazyInitClass 对象。但当 instance 初始化完成后,同步便没有了意义。同步则成为影响 getInstance 性能的关键。有没有一种方法,可以在初始化时进行正确的同步,初始化完成后又避免同步呢?于是 DCL 出现了。

/**
 * code 1.3
 */
@NotThreadSafe
public class Client {
    private LazyInitClass instance ;

    public LazyInitClass getInstance() {
        if(instance == null){
            synchronized(this){
                if(instance == null){
                    instance = new LazyInitClass("LazyInitClassFieldName") ;
                }
            }
        }
        return instance ;
    }
}

代码

很不幸,上述代码在编译器优化、多处理器共享内存的情况下,并不能正常工作。

LazyInitClass 代码如下:

/**
 * code 1.4
 */
@NotThreadSafe
public class LazyInitClass {
    private String lazyInitClassField ;
    public LazyInitClass(String lazyInitClassField) {
        this.lazyInitClassField = lazyInitClassField ;
    }
}

代码

2. DCL 存在的问题

LazyInitClass 实例写入 instance field,与 LazyInitClass 对象内部 lazyInitClassField 对象的初始化两步操作将会出现有序性问题。(详细的有序性描述可以阅读上一篇文章:《Java 并发系列(一):多线程三大特性》

具体表现为:某一线程调用 getInstance 方法后,将得到一个非空的 instance 对象,但却只能看到 lazyInitClassField 的默认值,即:lazyInitClassField 为空字符串,而非构造方法中传入的LazyInitClassFieldName。

3. 使 DCL 正常工作

3.1 JDK 1.3 以后(包含 JDK 1.3)的解决方案

/**
 * code 3.1
 */
@ThreadSafe
class Client {
         private final ThreadLocal perThreadInstance = new ThreadLocal();
         private LazyInitClass instance ;
         public LazyInitClass getInstance() {
             if (perThreadInstance.get() == null) createInstance();
             return instance;
         }
         private void createInstance() {
             synchronized(this) {
                 if (instance == null)
                     instance = new LazyInitClass("LazyInitClassFieldName");
             }
             perThreadInstance.set(perThreadInstance);
         }
    }

代码

3.2 JDK 1.5 以后(包含 JDK 1.5)的解决方案

从 JDK5 开始,Java Memory Model 升级,volatile 关键字便可以保证可见性与有序性。

要使 DCL 正常工作,多了一种更为方便的解决方案:

/**
 * code 3.2
 */
@ThreadSafe
public class Client {
    private volatile LazyInitClass instance ;

    public LazyInitClass getInstance() {
        if(instance == null){
            synchronized(this){
                if(instance == null){
                    instance = new LazyInitClass("LazyInitClassFieldName") ;
                }
            }
        }
        return instance ;
    }
}

代码

3.3 JDK 1.3 以前(不包含 JDK 1.3)的解决方案

由于 JDK1.2 版本,ThreadLocal 非常慢,所以 JDK 1.2 并不推荐使用 ThreadLocal 解决 DCL 问题。所以 JDK1.3 版本以前,DCL 并没有解决方案。

3.4 不可变对象

/**
 * code 3.4
 */
@ThreadSafe
public class ImmutableLazyInitClass {
    private final String lazyInitClassField ;
    public ImmutableLazyInitClass(String lazyInitClassField) {
        this.lazyInitClassField = lazyInitClassField ;
    }
}

代码

如果 LazyInitClass 对象是不可变对象,则不使用 volatile 关键字 DCL 也能正常工作(code 1.3 所示)。这是由 Java 内存模型中,final 域的特殊语义保证的:final 域能确保初始化过程的安全性,从而可以不受限制地访问不可变对象,并在共享这些对象时无须同步。

4. DCL 的替代方案

/**
 * code 4.1
 */
@ThreadSafe
public class Client {

    private static class LazyInitClassHolder {
      static LazyInitClass singleton = new LazyInitClass("LazyInitClassFieldName");
  }

    public static LazyInitClass getInstance() {
        return LazyInitClassHolder.singleton ;
    }
}

代码

这种方式被称为延迟初始化占位类模式,由 Java 语义保证:只有调用了 getInstance 方法后,LazyInitClassHolder.singleton 才会被初始化。所以此方式能完美替代 DCL。

5. 总结

DCL 的使用方式已经被广泛废弃。DCL 之所以出现是因为无竞争同步的执行速度很慢,以及 JVM 启动很慢。但这两个问题已经不复存在,因而它并不是一种高效的优化措施。延迟初始化占位类模式能带来相同的优势,并更容易理解。

6. 参考资料

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容

  • 夜莺2517阅读 127,717评论 1 9
  • 版本:ios 1.2.1 亮点: 1.app角标可以实时更新天气温度或选择空气质量,建议处女座就不要选了,不然老想...
    我就是沉沉阅读 6,887评论 1 6
  • 我是黑夜里大雨纷飞的人啊 1 “又到一年六月,有人笑有人哭,有人欢乐有人忧愁,有人惊喜有人失落,有的觉得收获满满有...
    陌忘宇阅读 8,532评论 28 53
  • 兔子虽然是枚小硕 但学校的硕士四人寝不够 就被分到了博士楼里 两人一间 在学校的最西边 靠山 兔子的室友身体不好 ...
    待业的兔子阅读 2,597评论 2 9