[量化学院]监督式机器学习算法的应用:择时

导语:《Machine Learning for Stock Price Forecasting》是Ali El-Shayeb撰写的机器学习系列文章 ,本文主要介绍其第二部分内容——《监督式机器学习算法的应用》,并将其思想和代码应用在中国股票市场,开发出具有择时功能的监督式机器学习算法,最后进行策略回测。对此感兴趣的小伙伴可以直接在本文文末克隆策略源代码,进行深入和扩展研究。

《监督式机器学习算法的应用》

Ali El-Shayeb通过价格和成交量相关的9个特征训练模型,特征列表和数据来源见下图。

image

作者希望训练出一个二分类模预测模型,来预测市场属于牛市还是熊市状态。在训练集数据处理上,如果交易日t+30价格小于t交易日价格,那么标注为0,否则标注为1。通过特征数据和标注数据可以训练出一个二分类模型,接着在预测集上进行预测,如果预测结果为1,表明为买入信号,如果预测集为0,表明是卖出信号。最后,通过预测结果回测检验策略收益曲线。

需要补充的一点是,作者将训练集上80%的数据作为训练集,20%的数据作为验证集,在验证集上评估策略的预测效果。评估指标为准确率,准确率计算公式为预测正确的天数与总预测天数的比值。

模型比较

Ali El-Shayeb尝试了多个机器学习分类模型,发现模型表现各不一样(见下图)。通过构建更多的特征能够消除数据噪音,获取更好的预测结果。此外,作者还发现预测时间越长,模型预测越准确。模型的准确率较之于随机猜测(50%涨,50%跌)的差值,恰恰能够体现模型的有效性。

image

交易策略

华尔街专业量化交易员预测第二天涨跌的准确率为55%,预测未来30天股价的准确率高达80%。Ali El-Shayeb发现,使用支持向量机分类算法的准确性最高,模型会告诉他,如果价格下跌就卖出股票,如果价格上涨就买入股票。该策略从08年到10年每月收益为1.3%,期间策略总收益为31.2%。在该时间段,基于标准普尔S&P500买入并持有的策略收益率为-6.9%。

展望和不足

  • 股票价格受很多因子影响,股票池不一样,总能找到比较好的策略回测曲线
  • 模型偏简单,没有考虑宏观方面的一些特征,比如GDP、通货膨胀率、利率水平等
  • 财报的因子也没有考虑进去,未来可以基于自然语言处理(NLP)的算法对财报进行分析预测

A股市场策略复现

本文将Ali El-Shayeb的量化思想应用在A股上面,因为本质上该策略属于择时策略,因此我们只需确定股票。这里我们以深高速(600548.SHA)为例,如果大家想要换成其他股票,修改下证券代码列表这个模块的参数即可。

本文完全采用Ali El-Shayeb提到的9个因子,其中2015年到2017年初为训练集,2017年到2018年为预测集(回测区间)。因为是二分类算法,所以我们采取Logistic Regression算法,如果大家想检验一下其他二分类算法的效果,可以直接在模块里将算法更改为sklearn机器学习包相关的算法名称。

策略回测结果:

image

从上图可以看出,该策略在在回测区间总收益率为17.36%,而如果直接买入并持有该股票的话,策略总收益率为9.3%。该策略主要是通过择时空仓规避了下跌,可见该策略择时有效。

需要说明的是,本文旨在复现国外数据科学家的一个量化策略,介绍如何在A股市场开发ai量化策略,希望大家能够快速高效开发策略。因此并不对策略收益做保证。

参考文献

附录

BigQuant——人工智能量化投资平台

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容

  • 本文整理了60个机器学习算法应用场景实例,含分类算法应用场景20个、回归算法应用场景20个、聚类算法应用场景10个...
    火禾子_阅读 1,745评论 0 7
  • 首页 资讯 文章 资源 小组 相亲 登录 注册 首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他...
    Helen_Cat阅读 3,843评论 1 10
  • 10月第3周复盘 复盘第13周 这周自己从咳嗽转成重感冒,每天发冷穿很多,还是喷嚏不断,声音也哑了。 娃娃 娃娃们...
    晴天ivory阅读 183评论 0 0
  • 秋色无边霞云浮 朝日瞳瞳清光环沧波潋滟棹船客侧畔何人歌声传
    捉刀客王静阅读 313评论 0 2
  • 晚餐前,例行盛汤。 问小孙女:“苦瓜汤,你要不?”给她个鬼脸,知道她肯定不喝啦! 她回我个鬼脸:“不要!” 阿嬷正...
    Lin太阳阅读 292评论 0 0