为什么我们需要批量操作?

背景

实习的时候被问过一个问题,为什么 redis 会有 pipline,mysql 会有 batch,这些东西都具有批量操作的共性,是什么原因让我们在处理数据时需要批量操作?

这么说可能有些抽象,举一个和 API 调用有关的例子 🌰:

现有三个服务 service A、service B 和 service C。因业务需要,我们需要在 service A 中调用 service B 获取一组 id,然后根据 id 从 service C 中读取最终内容。然后组织成结果返回前端。由于 service C 只提供了单个 id 查询内容的 API,所以如果我们想要获取批量的信息,最先想到的办法是通过 for 循环多次调用 service C。但是这样的办法是极其不优雅的,接下来我们从以下两个方面来分析。

网络通信

鉴于现在的分布式架构,每个 service 都分布在不同的服务、不同的机器中,所以我们每次调用都要通过 RPC 来实现,这就要求我们不得不构造同等数量的请求来获取数据。这样就会导致了一些效率问题。如下图所示:

所以我们通常会通过在 service C 中提供一个批量查询的接口来解决多次通信的问题。如下图所示 👇

我们知道,并不是每一次网络传输都非常稳定,中途可能会遇到丢包等一系列问题,而用批量查询代替 for 循环单个查询,这样做的好处是,我们可以减少网络通信的次数,一定程度上可以增加整个系统的健壮性。

数据查询

解释完多次 rpc 调用可能造成的网络延迟的问题后,我们再往深一点的地方看。

一般情况下,数据都是存放在数据库中的,所以无论是单个查询还是批量查询,我们最终都是要访问到数据库的。

现假设,我们需要从数据库中查询一个 id 为 123 的用户信息,我们可以用类似下面这样的代码。

long id = 123;
Person p = serviceA.getPersonById(id);

那如果我们需要查询一组 id 为 123、456、789 的用户信息,在没有批量查询接口的情况下,我们可以用 for 循环的方式实现:

long[] ids = {123,456,789};
List<Person> ps=new ArrayList<>();
for(long id : ids){
    ps.add(serviceA.getPersonById(id));
}

这么看虽然符合逻辑,但在数据库查询时,会有一定的性能损耗。

以 MySQL 为例,不论是 MyISAM 存储引擎还是 InnoDB 存储引擎,锁这个概念一直都是贯穿其中的,MyISAM 存储引擎默认是使用表锁,InnoDB 存储引擎默认使用的是行锁,这就意味着,在查询数据时,mysql 会将相关记录“锁起来”,只有当结果查询完毕时才会释放锁。

相较于批量查询只有一次上锁、开锁这种情况,循环里的每次查询都要先拿到锁,然后再释放锁,这个操作自然会更加耗时。这也就是为什么 mysql 会提供 batch 操作的原因。

Redis 中的 pipline

这里我们再来扩展一下,为什么 redis 中会需要 pipline 这样一种实现机制。

pipline,中文翻译为管道,它可以将一组 redis 命令进行封装,一次性将多个命令传输到 redis 服务端,并将数据一次性带回。这样就可以通过一次 RTT (Round Trip Time 往返时间),将多个数据带回,减少了数据传输的 RTT 消耗。如下图所示 👇

redis 的命令执行是微妙级别的,这个速度相对于网络延时是非常小的,因此才有了 redis 的性能瓶颈在网络的说法。并且事实上网络确实已经是 redis 的性能瓶颈之一。

这就更凸显了批量操作的重要性了。

最后

回到这一篇的主题,为什么我们需要批量操作?

虽然现在已经是“云”的时代,在云内部的 rpc 请求几乎不消耗时间,但我们仍然需要意识到构造请求、解析请求、查询数据库等方面的时间和资源消耗。

如果不能批量操作,那么,需要操作的资源越多,操作执行的次数也会越多。这是一个线性上升的模型。就像数据库导入数据,一条两条,手写个 sql 完全没问题。那如果是,100 万+数据呢?一条一条手动导入?这显然是不合理的。

这就是批量操作的现实意义。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352