Logistic Regression

概述


逻辑斯蒂回归是一个分类算法,它通过\vec{w}将输入值进行线性合并,然后通过sigmoid函数将线性合并的值映射到(0,1)之间,得到类别的概率表示P(Y|X)

sigmoid函数:

f(x)=\frac{1}{1+e^{-x}}=\frac{e^x}{1+e^x}

f(-x)=\frac{1}{1+e^x}=\frac{e^{-x}}{1+e^{-x}}=\frac{1+e^{-x}-1}{1+e^{-x}}=1-\frac{1}{1+e^{-x}}=1-f(x)

逻辑斯蒂回归模型


P(Y=1|x)=sigmoid(w^Tx+b)

输入向量尾部加1,上式可写作

P(Y=1|x)=sigmoid(w^Tx)

该模型有一个比较好的特点是对某个输入其分类类别之间的对数几率是x的线性函数。

事件发生的几率(odds)定义为

odds=\frac{P(Y=1)}{P(Y=0)},

对LR来说

odds=\frac{P(Y=1|x)}{P(Y=0|x)}=\frac{sigmoid(w^Tx)}{1-sigmoid(w^Tx)}=\frac{sigmoid(w^Tx)}{sigmoid(-w^Tx)}=e^{w^Tx}

log(odds)=log(e^{w^Tx})=w^Tx

逻辑斯蒂回归模型又称为对数线性模型

参数估计


使用最大似然法进行参数估计

P(Y=1|x)=\pi,P(Y=0|x)=1-\pi,单个数据的概率分布符合伯努利分布,有

Likelihood = \prod_{i=1}^n \pi_i^{y_i}(1-\pi_i)^{(1-y_i)}

\begin{align*}Log-Likelihood&=\sum_{i=1}^nlog(\pi_i^{y_i}(1-\pi_i)^{(1-y_i)}) \\&=\sum_{i=1}^n(y_ilog(\pi_i)+(1-y_i)log(1-\pi_i))\\&=\sum_{i=1}^n(y_ilog\frac{\pi_i}{1-\pi_i}+log(1-\pi_i))\\&=\sum_{i=1}^n(y_iw^Tx_i-log(1+e^{w^Tx_i}))\end{align*}

可以通过拟牛顿法或梯度下降法求对数似然的最大化问题。

多项逻辑斯蒂回归


假设有K个类别,引入K-1个参数向量w_1, w_2, \ldots,w_{K-1},得到模型

P(Y=k|x)=\frac{e^{w_k^Tx}}{1+\sum_{i=1}^{K-1}e^{w_i^Tx}},for\ k=1,2,\ldots,K-1\\P(Y=K|x)=\frac{1}{1+\sum_{i=1}^{K-1}e^{w_i^Tx}}

可以通过极大似然法进行参数估计得到最优的w_1^*, w_2^*, \ldots,w_{K-1}^*

神经网络化


softmax函数:

{\displaystyle softmax(\vec v)_i={\frac {e^{v_i}}{\sum _{k=1}^{K}e^{v_k}}}}

softmax函数将

vec=Wx, W=\left[\begin{matrix} w_1^T      \\ w_2 ^T     \\  \vdots    \\ w_n^T     \\\end{matrix}\right]

进行归一化得到一个概率分布P。

有以下特征:

softmax(\vec v) = softmax(\vec v + c),即向量\vec v各个元素加一个相同的数经过softmax得到的概率分布与softmax直接在向量\vec v上得到的概率分布相同。该性质对于数值计算有帮助,实践中常常在(\vec v - \min \vec v)上进行softmax变换。

经过softmax变换后,\vec v中最大的元素对应下标在最后概率分布P中会更突出。

对比前面多项逻辑斯蒂回归模型,令

w_{K}=(0, 0, \ldots, 0)^T,W=\left[\begin{matrix} w_1^T      \\ w_2 ^T     \\  \vdots    \\ w_K^T     \\\end{matrix}\right],

多项逻辑斯蒂回归模型可表示成

P=softmax(Wx)

所以可以把多项逻辑斯蒂回归看做一个3层的神经网络,输入层为输入向量x,隐含层有K个节点,激活函数为f(x)=x,输出层为softmax。网络拓扑如下

该网络以对数损失(对数似然损失,交叉熵损失)为损失函数。

【二项逻辑斯蒂回归可用两层神经网络表示】

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容