O(1)时间复杂度内实现LRU简单算法

LRU算法

LRU(Least Recently Used),即最近最少使用算法。常用于实现一个简单的缓存功能,就是把很久未使用的直接移除掉,只保留最近使用的。

LRU主要功能

LRU主要需要实现两个功能

  • 添加缓存(涉及到删除缓存)
  • 获取缓存

实现原理

其实用一个单链表就能实现简单的LRU算法,但是链表的查找时间复杂度比较高了,是O(n)。其实用一个散列表+双链表就可以实现一个O(1)复杂度的LRU算法。用散列表就可以直接定位某个缓存,时间复杂度O(1),但是散列表插入缓存之后,就没有了顺序,所以才需要一个链表来维护这个缓存的顺序,这样才能知道哪些缓存一直未使用,超过缓存最大容量之后需要删除未使用的缓存。而如果单链表删除某个缓存的话,又需要先遍历这个元素(时间复杂度O(n))才行。所以这里用双链表,那么就可以通过散列表直接定位到这个缓存节点,然后知道这个缓存节点的前驱和后继节点就可以在O(1)时间复杂度内删除这个缓存了。

show me your code

package com.program;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

/**
 * LRUCache算法:最近最少使用算法
 * 核心算法实现:散列表+双向链表
 * 算法核心功能:
 * 1.添加缓存(先判断散列表中是否存在该缓存,如果存在,则将该缓存移动到链尾。
 * 如果不存在,则先判断链表是否已经满了,如果满了则先把头结点删除,未满则直接插到链尾)
 * 2.查找缓存(因为是散列表,所以时间复杂度,接近O(1))
 * 3.删除缓存
 */
public class LRUCache {
    private int cacheSize = 10;
    private HashMap<String, Node> map = new HashMap<>();
    private Node head;
    private Node tail;

    public void LRUCache(int cacheSize) {
        this.cacheSize = cacheSize;
    }

    /**
     * 添加缓存
     * 先判断是否已有该缓存,如果有则直接放到链尾取出,
     * 如果没有,则判断是否已满,如果满了,删除链头数据,否则直接插到链尾
     */
    public void addCache(String key, String value) {
        if (map.containsKey(key)) {
            Node node = map.get(key);
            if (node.next != null) {
                if (node.pre == null) {
                    head = node.next;
                } else {
                    node.pre.next = node.next;
                    node.next.pre = node.pre;
                }
                tail.next = node;
                node.pre = tail;
                node.next = null;
                tail = node;
            }
        } else {
            Node node = new Node(key, value);
            if (map.size() == cacheSize) {
                Node temp = head;
                head = head.next;
                map.remove(temp.key);
                node.pre = tail;
                tail.next = node;
                tail = node;
            } else {
                if (head == null) {
                    head = node;
                    tail = node;
                } else {
                    node.pre = tail;
                    tail.next = node;
                    tail = node;
                }
            }
            map.put(key, node);
        }
    }

    /**
     * 获取缓存
     * 先判断是否有缓存,如果有,需要把该缓存移动到链尾返回
     */
    public String getCache(String key) {
        if (map.containsKey(key)) {
            Node node = map.get(key);
            if (node.next == null) {
                return node.value;
            }
            if (node.pre == null) {
                head = node.next;
            } else {
                node.pre.next = node.next;
                node.next.pre = node.pre;
            }
            tail.next = node;
            node.pre = tail;
            node.next = null;
            tail = node;
            return node.value;
        } else {
            return null;
        }
    }

    public void test() {
        Iterator<Map.Entry<String, Node>> iterator = map.entrySet().iterator();
        while (iterator.hasNext()) {
            Map.Entry<String, Node> entry = iterator.next();
            System.out.println(entry.getKey() + "--" + entry.getValue().value);
        }
    }

    public void test2() {
        Node temp = head;
        while (temp != null) {
            System.out.println(temp.key);
            temp = temp.next;
        }
    }

    public static void main(String[] args) {
        LRUCache cache = new LRUCache();
        cache.addCache("key0", "value0");
        cache.addCache("key1", "value1");
        cache.addCache("key2", "value2");
        cache.addCache("key3", "value3");
        cache.addCache("key4", "value4");
        cache.addCache("key5", "value5");
        cache.addCache("key6", "value6");
        cache.addCache("key7", "value7");
        cache.addCache("key8", "value8");
        cache.addCache("key9", "value9");
        cache.getCache("key9");
        cache.test2();
    }

    class Node {
        String key;
        String value;
        Node pre;
        Node next;

        public Node(String key, String value) {
            this.key = key;
            this.value = value;
        }
    }
}

免责声明:代码未经充分测试,如果发现问题还请不吝赐教,谢谢。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容