什么是深度学习,几个名词的简单形象通俗解释,让你看就记住

这个故事包含了,有监督,无监督,训练数据集,测试数据集,过拟合




第一眼看到“学习”,大多数人想到的是读书、上课、写作业,我们就拿它作为切入点。上课时,我们是跟着老师一步步学习,即“有监督”学习;而课后的作业,则需要靠自己完成,是“无监督”学习。平时做的课后练习题,是我们学习系统的“训练数据集”,而考试时卷面上的题目则属于“测试数据集”,用于检验我们的学习成果。“学霸”训练效果比其他人好,对测试数据集的所有情况如数家珍;“学渣”则完全没有训练或训练不充分,对测试数据集的效果和随机猜测差不多;还有“学痴”在训练上出现了“过拟合”,平时做训练题滚瓜烂熟,一遇大考就跪了……

更抽象地表达,可以说学习是一个不断发现自身错误并改正错误的迭代过程。人是如此,机器亦如此。带“学习”功能的机器能仅仅通过“看”未知系统的输入-输出对(称为训练样本),自动实现该系统内部算法,并具有举一反三的能力(称为泛化),对不在训练样本中的未知输入也能产生正确的输出,完全不需要程序员或算法专家动手设计中间算法,是不是感觉非常酷?

如果将训练样本表示为:

D= {z1, z2, …, zn}

其中,zi表示未知系统 P(Z)中采样得到的数据(每个元素都可表示为输入-输出对)。规定惩罚函数L(f, Z),其参数为学习到的规则f和独立于训练样本的验证样本集Z,其返回值为实数标量,称为惩罚值,又称损失(Loss)。对机器的要求是让损失最小,否则会让机器陷入无止境的重复计算中不得安宁。运行在这些机器上的邪恶算法称为机器学习算法,它能从数据D中学习游戏规则f(攒经验),然后靠学到的经验不断提高游戏得分,最终获得整套游戏攻略(训练好的模型)。

为了让机器自动学习,需要为机器准备三份数据:

(1)训练集,机器学习的样例。

(2)验证集,机器学习阶段,用于评估得分和损失是否达到预期要求。

(3)测试集,机器学习结束之后,实战阶段评估得分。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容