R语言机器学习算法实战系列(十七)特征选择之弹性网络回归算法(Elastic Net Regression)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

image.png
  1. R语言机器学习算法实战系列(一)XGBoost算法+SHAP值(eXtreme Gradient Boosting)
  2. R语言机器学习算法实战系列(二) SVM算法+重要性得分(Support Vector Machine)
  3. R语言机器学习算法实战系列(三)lightGBM算法+SHAP值(Light Gradient Boosting Machine)
  4. R语言机器学习算法实战系列(四)随机森林算法+SHAP值 (Random Forest)
  5. R语言机器学习算法实战系列(五)GBM算法+SHAP值 (Gradient Boosting Machines)
  6. R语言机器学习算法实战系列(六)K-邻近算法 (K-Nearest Neighbors)
  7. R语言机器学习算法实战系列(七)朴素贝叶斯分类算法 (Naïve Bayes Classifier)
  8. R语言机器学习算法实战系列(八)逻辑回归算法 (logistic regression)
  9. R语言机器学习算法实战系列(九)决策树分类算法 (Decision Trees Classifier)
  10. R语言机器学习算法实战系列(十)自适应提升分类算法 (Adaptive Boosting)
  11. R语言机器学习算法实战系列(十一)MLP分类算法 (Multi-Layer Perceptrons)
  12. R语言机器学习算法实战系列(十二)线性判别分析分类算法 (Linear Discriminant Analysis)
  13. R语言机器学习算法实战系列(十三)随机森林生存分析构建预后模型 (Random Survival Forest)
  14. R语言机器学习算法实战系列(十四): CatBoost分类算法+SHAP值 (categorical data gradient boosting)
  15. R语言机器学习算法实战系列(十五)随机森林生存预后模型+SHAP值 (Random Survival Forest + SHAP)
  16. R语言机器学习算法实战系列(十六)随机森林算法回归模型+SHAP值(Random Forest Regression + SHAP)
  17. R语言机器学习算法实战系列(十七)特征选择之弹性网络回归算法(Elastic Net Regression)
  18. R语言机器学习算法实战系列(十八)特征选择之LASSO算法(Least Absolute Shrinkage and Selection Operator Regression)
  19. R语言机器学习算法实战系列(十九)特征选择之Monte Carlo算法(Monte Carlo Feature Selection)
  20. R语言机器学习算法实战系列(二十)特征选择之Boruta算法

机器学习论文

  1. R语言机器学习论文(一):研究背景
  2. R语言机器学习论文(二):数据准备
  3. R语言机器学习论文(三):特征提取
  4. R语言机器学习论文(四):模型构建
  5. R语言机器学习论文(五):解释模型
  6. R语言机器学习论文(六):总结

介绍

特征选择(Feature Selection)是机器学习中的一个重要步骤,它涉及到从原始特征集中选择最相关、最有信息量的特征子集,以用于模型训练和预测。这个过程的目的是提高模型的性能、减少计算成本、增强模型的可解释性,并可能提高模型的泛化能力。以下是特征选择的几个关键点:

  1. 定义:特征选择是从原始特征集中选择一个子集的过程,这个子集被认为是对模型预测最有用的。
  2. 必要性
    • 数据简化:减少特征数量可以简化模型,使其更容易理解和解释。
    • 性能提升:去除不相关或冗余的特征可以减少模型的过拟合风险,提高模型的泛化能力。
    • 计算效率:减少特征数量可以减少模型训练和预测的时间和计算资源消耗。
  3. 方法
    • 过滤方法(Filter Methods):基于统计测试对各个特征进行评分,选择分数高的特征。这种方法独立于任何模型。
    • 包装方法(Wrapper Methods):将特征选择过程视为搜索问题,使用模型的性能作为指标来评估不同特征子集的效果。
    • 嵌入方法(Embedded Methods):在模型训练过程中进行特征选择,如使用Lasso回归时,一些特征的系数会变为零,从而实现特征选择。
  4. 评估
    • 准确性:评估特征选择后模型的预测准确性是否有所提高。
    • 模型复杂度:评估模型的复杂度是否降低,例如通过减少训练时间或模型参数的数量。
    • 可解释性:评估模型的可解释性是否增强,即是否更容易理解模型的决策过程。
  5. 应用场景
    • 在数据预处理阶段,特征选择可以帮助清理数据,去除噪声和异常值。
    • 在模型训练阶段,特征选择可以提高模型的训练效率和预测性能。
    • 在模型部署阶段,特征选择可以减少模型的部署成本和运行时资源消耗。

弹性网络回归(Elastic Net Regression)是一种结合了岭回归(Ridge Regression)和Lasso回归(Least Absolute Shrinkage and Selection Operator Regression)特点的线性回归模型。它通过同时使用L1和L2正则化项来控制模型的复杂度,并且有助于处理具有多重共线性的特征。弹性网络回归结合了Lasso回归的变量选择能力和岭回归对多重共线性的稳健性,使其在许多实际应用中都非常有用。特别是在特征数量较多且存在多重共线性的情况下,弹性网络回归可以提供比单独使用Lasso或岭回归更好的性能。

教程

本文旨在通过R语言实现弹性网络回归(Elastic Net Regression)之特征选择,总共包含:

  1. 下载数据
  2. 加载R包
  3. 数据预处理
  4. 数据切割
  5. 弹性网络回归
  6. 调参λ & alpha
  7. 选择最佳λalpha构建预测模型
  8. 筛选出来的特征
  9. 采用AUC等指标评估模型
  10. 混淆矩阵评估模型
  11. AUC曲线刻画模型在训练和测试数据集的表现
  12. 总结
  13. 系统信息

更多内容请前往

R语言机器学习算法实战系列(十七)特征选择之弹性网络回归算法(Elastic Net Regression)

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,137评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,824评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,465评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,131评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,140评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,895评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,535评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,435评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,952评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,081评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,210评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,896评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,552评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,089评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,198评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,531评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,209评论 2 357

推荐阅读更多精彩内容