独占锁, 即一次允许一个线程进入临界区。
加锁流程
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
这里首先调用tryAcquire直接去尝试获取锁, 成功就返回了。
如果失败, 这时候调用addWaiter将自己加入到等待队列,然后调用acquireQueued开始自旋或者阻塞等待加锁成功, acquireQueued返回false时表示加锁成功直接返回, 返回true时表示被设置中断标记了, 那么调用selfInterrupt中断自己。
tryAcquire
这是具体锁需要实现的方法, 一般是使用CAS增加同步变量, 成功者表示获得锁, 返回true, 下面是ReentrantLock的实现:
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
} else if (current == getExclusiveOwnerThread()) {
//这里处理重入的情况
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
加入同步等待队列
同步等待队列是一个CLH队列的变体,所以加入队列的方式很简单,使用CAS设置tail指向自己,代码如下:
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
首先根据模式和当前线程创建一个Node对象,如果tail不为空,那么做一次快速设置的尝试:将node.prev指向队列尾, 然后使用CAS设置tail指向node,设置成功的话,将原队列尾的节点的next指向node,插入成功直接返回。如果设置tail失败,那么进入enq函数。
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
如果tail指向空,表示队列是空的,这时候需要初始化下队列(创建一个空的Node),然后把tail指向head。
如果tail不为空,和上面的样尝试插入,不成功循环继续, 直到插入成功为止。
自旋或者阻塞等待
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
加入同步等待队列以后,线程就可以进入等待状态了, 当前节点是循环读取前驱节点的状态来处理的:
- 前驱节点是head, 那么就尝试去获取锁, 获取成功的话,就出队列(将自己设置为head),返回中断状态;
- 如果前驱节点不是head, 或者是加锁失败了, 调用shouldParkAfterFailedAcquire检查是否应该阻塞自己:
2.1 如果需要阻塞,就调用parkAndCheckInterrupt阻塞自己,这时候线程暂停了,再次恢复时,是被其他线程唤醒了自己,这时候需要检查下线程的中断状态,如果是已经中断,那么设置返回结果为true, 在获取到锁返回后, 线程会调用selfInterrupt中断自己。
2.2 如果不需要阻塞,那么就继续循环。 - 流程处理失败(比如抛出异常), 需要调用cancelAcquire,取消节点加锁请求。
检查是否应该阻塞自己
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
return true;
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
是否应该阻塞自己是根据前驱节点的状态判断的:
- 前驱节点状态是SIGNAL, 那么本节点需要阻塞, 返回true;
- 前驱节点状态>0(只有CANCEL状态),说明前驱节点被取消了, 这时候往前搜索,找到一个非取消节点,把当前节点链接上去,返回false表明不需要阻塞自己;
- 前驱节点的状态是0或者PROPAGATE,尝试设置前驱状态为SIGNAL, 返回false表明不需要阻塞自己;
阻塞自己
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
解锁流程
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
调用tryRelease尝试释放自己, 如果成功的话,判断自己的状态,不为0(说明可能是CANCEL,SIGNAL或者PROPAGATE)时调用unparkSuccessor唤醒后继线程。
tryRelease
这是具体独占锁需要实现的方法,一般而言是把加上去的同步变量值减回来, 释放成功(同步变量值为0)时,返回true。 下面是ReentrantLock的实现:
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
唤醒后继者
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
- 如果节点的状态是SIGNAL、PROPAGATE, 那么将自己设置为0 。
- 检查后继节占是否为null或者是取消状态,如果是的话, 找到非取消的后继节点(因为node.next为null并不表示真的没有后继节点,需要使用tail从后往前遍历一次)。
- 如果有非取消的后继节点,对非取消状态的后继节点调用LockSupport.unpark唤醒线程, 后继节点被唤醒后,会检查前驱的状态进行处理。
取消流程
private void cancelAcquire(Node node) {
if (node == null)
return;
node.thread = null;
Node pred = node.prev;
while (pred.waitStatus > 0)
node.prev = pred = pred.prev;
Node predNext = pred.next;
node.waitStatus = Node.CANCELLED;
if (node == tail && compareAndSetTail(node, pred)) {
compareAndSetNext(pred, predNext, null);
} else {
// If successor needs signal, try to set pred's next-link
// so it will get one. Otherwise wake it up to propagate.
int ws;
if (pred != head &&
((ws = pred.waitStatus) == Node.SIGNAL ||
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
pred.thread != null) {
Node next = node.next;
if (next != null && next.waitStatus <= 0)
compareAndSetNext(pred, predNext, next);
} else {
unparkSuccessor(node);
}
node.next = node; // help GC
}
}
- 清空节点的thread ;
- 循环往前找到非取消节点,pred指向非取消节点;
- 使predNext指向pred的下个节点(这个节点一定是取消节点);
- 设置当前节点状态为CANCELLED, 接下来其他线程的操作都会跳过本节点;
- 如果当前节点是尾节点, 那么直接设置pred为尾节点;
- 如果pred是头节点了, 那么直接调用unparkSuccessor唤醒本节点的后继节点;
- 如果pred节点非头节点,状态为SIGNAL状态(或者非取消状态下设置状态为SIGNAL成功),thread不为空,本节点的后继是非取消状态,这些条件下使用CAS设置pred节点的后继为当前节点的后继。