【090】不要迷信大数据|The era of blind faith in big data must end

Speaker: Cathy O'Neil

Key words:数据 算法 歧视

Abstract:算法对每个的的生活都很重要。数学家和大数据科学家Cathy O'Neil告诉我们:1、警惕不要让算法成为rule maker创造出来剥削他人的数学武器。2、很多时候,建立算法时使用的数据本身可能存在缺陷,这会导致算法的不正确和不公平,对此我们应采取措施。

@TED: Algorithms decide who gets a loan, who gets a job interview, who gets insurance and much more -- but they don't automatically make things fair, and they're often far from scientific. Mathematician and data scientist Cathy O'Neil coined a term for algorithms that are secret, important and harmful: "weapons of math destruction." Learn more about the hidden agendas behind these supposedly objective formulas and why we need to start building better ones.

Content:

Fact:

  • Algorithm is everywhere and is used to sort and separate the winners from the losers
  • Algorithms are opinions embedded in code
  • Algorithms are not always objective and true and scientific.

Question: What if the algorithms are wrong?

Two elements of algorithm:

  • you need data, what happened in the past
  • and a definition of success, the thing you're looking for and often hoping for
  • You train an algorithm by looking, figuring out.

Bias affect algorithms:

Eg:

  1. the algorithm uesd to select persons at the hiring process in Fox News is more likely to succeed usually filter out women because they do not look like people who were successful in the past.

  2. when we send the police only to the minority neighborhoods to look for crime. The arrest data would be very biased and the algorithm to predict the individual criminality would go wrong

The news organization ProPublica recently looked into one of those "recidivism risk" algorithms, as they're called, being used in Florida during sentencing by judges. Bernard, on the left, the black man, was scored a 10 out of 10. Dylan, on the right, 3 out of 10. 10 out of 10, high risk. 3 out of 10, low risk. They were both brought in for drug possession. They both had records, but Dylan had a felony but Bernard didn't. This matters, because the higher score you are, the more likely you're being given a longer sentence.

Solution: algorithmic audit

  • data integrity check
  • think about the definition of success
  • we have to consider accuracy
  • we have to consider the long-term effects of algorithms, the feedback loops

Suggestion:

  1. for the data scientists: we should not be the arbiters of truth. We should be translators of ethical discussions that happen in larger society.
  1. the non-data scientists: this is not a math test. This is a political fight. We need to demand accountability for our algorithmic overlords.

Hope: The era of blind faith in big data must end.


Link:TED

快来加入#1000个TED学习计划#,在“一千个TED视频的探索之旅”中分享你最好最实用的TED学习笔记

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容

  • 今天看了更新的蛙哥漫画,“不知我的苦,就别劝我大度“,蛙哥的朋友小时候被老师冤枉偷东西,在家长面前挨打,在同学面前...
    矢车菊2阅读 2,405评论 0 0
  • 2017年1月5日星期四 15点04分 “威尔伯永远忘不了夏洛。它虽然热爱他的子女、孙子女、曾孙子女,可是这些新蜘...
    悦者阅读 769评论 3 5