中文分词器学习报告

1、ICTCLAS – 全球最受欢迎的汉语分词系统

中国科学院计算技术研究所在多年研究工作积累的基础上,研制出了汉语词法分析系统ICTCLAS (Institute of Computing Technology, Chinese Lexical Analysis System)。
主要功能包括中文分词;词性标注;命名实体识别;用户词典功能;微博分词;新词发现与关键词提取功能;支持GBK编码、UTF8编码、BIG5编码。

系统平台:Windows
开发语言:C/C++、Java、C#
使用方式:dll调用
开源网址:http://ictclas.nlpir.org/(自然语言处理与信息检索共享平台)
在线演示:http://ictclas.nlpir.org/nlpir/

分析示例

分析文本


1.png

分词标注


2.png

实体抽取1


3.png

实体抽取2


4.png

词频统计


5.png

情感分析


6.png

关键词提取


7.png

2、SCWS – 简易中文分词系统

SCWS:Simple Chinese Word Segmentation (简易中文分词系统)。
采用自行采集的词频词典,并辅以一定程度上的专有名称、人名、地名、数字年代等规则集,经小范围测试准确率在 90% ~ 95% 之间,基本满足一些中小型搜索引擎、关键字提取等场合运用。

SCWS 采用纯 C 代码开发,以 Unix-Like OS 为主要平台环境,提供共享函数库,方便植入各种现有软件系统。此外它支持 GBK,UTF-8,BIG5 等汉字编码,切词效率高。

系统平台:Windows/Unix
开发语言:C
使用方式:PHP扩展(易与现有的基于PHP架构的Web系统继续集成)
开源网址:http://www.ftphp.com/scws/
在线演示:http://www.xunsearch.com/scws/demo.php

分析示例

8.png

分词结果


9.png

3、IKAnalyzer 开源的轻量级中文分词工具包

IKAnalyzer 是一个开源的,基于java语言开发的轻量级的中文分词工具包。
支持用户词典扩展定义,采用歧义分析算法优化查询关键字的搜索排列组合;采用多子处理器分析模式,优化的词典存储,更小的内存占用。

系统平台: 跨平台
开发语言: Java

分词示例

package org.wltea.analyzer.sample;

import java.io.IOException;
import java.io.StringReader;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.tokenattributes.OffsetAttribute;
import org.apache.lucene.analysis.tokenattributes.TypeAttribute;
import org.wltea.analyzer.lucene.IKAnalyzer;

public class IKAnalzyerDemo {
    
    public static void main(String[] args){
        //构建IK分词器,使用smart分词模式
        Analyzer analyzer = new IKAnalyzer(true);
        //获取Lucene的TokenStream对象
        TokenStream ts = null;
        try {
            ts = analyzer.tokenStream("myfield", new StringReader("这是一个中文分词的例子,你可以直接运行它!IKAnalyer can analysis english text too"));
            //获取词元位置属性
            OffsetAttribute  offset = ts.addAttribute(OffsetAttribute.class); 
            //获取词元文本属性
            CharTermAttribute term = ts.addAttribute(CharTermAttribute.class);
            //获取词元文本属性
            TypeAttribute type = ts.addAttribute(TypeAttribute.class);
            //重置TokenStream(重置StringReader)
            ts.reset(); 
            //迭代获取分词结果
            while (ts.incrementToken()) {
              System.out.println(offset.startOffset() + " - " + offset.endOffset() + " : " + term.toString() + " | " + type.type());
            }
            //关闭TokenStream(关闭StringReader)
            ts.end();   // Perform end-of-stream operations, e.g. set the final offset.
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            //释放TokenStream的所有资源
            if(ts != null){
              try {
                ts.close();
              } catch (IOException e) {
                e.printStackTrace();
              }
            }
        }
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容