epoch、batch、training step(iteration)的区别

转载知乎:https://www.zhihu.com/question/43673341/answer/257382587
(1)iteration:表示1次迭代(也叫training step),每次迭代更新1次网络结构的参数;
(2)batch-size:1次迭代所使用的样本量;
(3)epoch:1个epoch表示过了1遍训练集中的所有样本。
值得注意的是,在深度学习领域中,常用带mini-batch的随机梯度下降算法(Stochastic Gradient Descent, SGD)训练深层结构,它有一个好处就是并不需要遍历全部的样本,当数据量非常大时十分有效。此时,可根据实际问题来定义epoch,例如定义10000次迭代为1个epoch,若每次迭代的batch-size设为256,那么1个epoch相当于过了2560000个训练样本。

image.png

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容