MapReduce:N keys,N files(三)数据倾斜优化

还是如何将N个keys写到N个文件的需求。
这次的问题是单个key太大,引起的单个reduce任务执行时间过长,导致整个MR运行时间过长。数据大部分的key在千,万级别,而有几个key在亿,10亿级别。
解决数据倾斜问题的核心是将数据量很大的key,打散变小分配给多个reduce,最好能均匀分布,这样所有的reduce接收相同的数据量,大家执行时间相差不多,就解决了数据倾斜问题。

一个最好的算法或者说处理方式最好与业务无关。既然与业务无关,则需要有个地方统计各个key的数量,然后根据key的数量给其分配reduce的个数。

【尝试一】

规定一个key处理的个数为1w。通过combiner统计各个key的长度,然后将该长度与原key组成新key:

public class SplitTextCombiner extends Reducer<Text,Text,Text,Text> {
    private Text outputKey = new Text();
    private int counter = 0;
    private final int MAX_RECOTD_PER_MAP = 10000;
    //private OrcStruct pair = null;
    protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
//        if (pair == null){
//            pair = (OrcStruct)OrcStruct.createValue(ISTool.getTypeDescription(context.getConfiguration()));
//        }
        for(Text oneValue:values){
            outputKey.set(key.toString() + "&" + counter/MAX_RECOTD_PER_MAP);

            context.write(outputKey, oneValue);
            counter++;
        }
    }
}

这个尝试是失败的。因为MR框架是先经过Partition,再Combiner的。Combiner时数据已经分好reducer了。大key还是分给了一个reducer。我们这边的操作只是将一个大key分为多个小key,没啥作用的。
只能通过partition将大key分为多个小key,而partition的时候是无法知道key的数量。现在的需求是partition之前,需要知道key的数量级。

这个是对mr的处理流程不清晰,才会有这种错误的想法。。

【尝试二】

没办法只能通过指定key的方式分割数据。
在配置中指定大key的分割文件个数n,随机将大key分配到指定的n个文件中。

由于reduce个数的限制,一般一个key只会分配到几个文件中。这里采用随机生成大数,再求余的方式生成随机数:

package is.split;

import org.apache.commons.lang.math.RandomUtils;

public class CreateRandomValue {
    private int begin;
    private int end;
    private final int max = 100000;
    public CreateRandomValue(int begin, int end){
        this.begin = begin;
        this.end = end;
    }

    public int createRandom(){
        int s = (RandomUtils.nextInt(max)%end)%(end-begin+1) + begin;
        return s;
    }
}

比如说我的配置项为(key-文件个数):10000:10,20000:20,3000:30。那么1000分配到第0-9reduce中,2000分配到第10-29reduce中,3000分配到30-59reduce中。避免大key分配到一个reduce,造成数据倾斜。

partition的时候对指定的key采用CreateRandomValue随机生成reduce序号即可。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 一.简述如何安装配置apache 的一个开源的hadoop 1.使用root账户登陆 2.修改ip 3.修改hos...
    栀子花_ef39阅读 4,971评论 0 52
  • MapReduce执行流程 MapReduce的执行步骤 1、Map任务处理 1.1 读取HDFS中的文件。每一行...
    依天立业阅读 2,253评论 0 8
  • 1.1、 分配更多资源 1.1.1、分配哪些资源? Executor的数量 每个Executor所能分配的CPU数...
    miss幸运阅读 3,208评论 3 15
  • 前段时间,我还在做快递行业的时候,店里有两个快递,同一个公司的,两个不同的客户,都是女的,暂且以A和B称呼吧。 我...
    彭晨龙阅读 535评论 0 2
  • 我梦见你就坐在我身边很近很近的看着我 久君就坐在后面,似乎有些吃醋 这种感觉虽然很美好,但是我不得不把他推开...
    army大军阅读 95评论 0 0