Tree Traversal

三种基本的Tree Traversal

  • inorder traversal: left subtree -> root -> right subtree
  • preorder traversal: root -> left subtree -> right subtree
  • postorder traversal: left subtree -> rightsubtree -> root

常见follow up

94. Binary Tree Inorder Traversal

//recursive
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        inorder(root, res);
        return res;
    }
    private void inorder(TreeNode root, List<Integer> res) {
        if (root == null) return;
        inorder(root.left, res);
        res.add(root.val);
        inorder(root.right, res);
    }
}
//iterative
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        while (!stack.empty() || root != null) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            TreeNode cur = stack.pop();
            res.add(cur.val);
            root = cur.right;
        }
        return res;
    }
}

Morris

  • for the cur node, if it does not has left-child, print it, update its right-child as cur
  • if cur node has left-child, find the right-most node as pre (the last one that we visit in left-subtree)
    (a) pre's right-child is NULL, pre's right-child points to cur node
    (b) pre's right-child is not NULL, set it to NULL (restore the original tree), print cur, and update cur's right-child as cur
//Morris
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        TreeNode cur = root;
        while (cur != null) {
            if (cur.left == null) {
                res.add(cur.val);
                cur = cur.right;
            } else {
                //find the predecesoor of current node
                TreeNode pre = cur.left;
                while (pre.right != null && pre.right != cur) {
                    pre = pre.right;
                }
                if (pre.right != null) {
                    res.add(cur.val);
                    pre.right = null;  //restore the original tree structure
                    cur = cur.right;
                } else {               
                    pre.right = cur;   //predecessor connect to cur
                    cur = cur.left;    //visit next node
                }
            }
        }
        return res;
    }
}

144. Binary Tree Preorder Traversal

//recursive
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        preorder(root, res);
        return res;
    }
    private void preorder(TreeNode root, List<Integer> res) {
        if (root == null) return;
        res.add(root.val);
        preorder(root.left, res);
        preorder(root.right, res);
    }
}
//iterative
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        while (!stack.empty() || root != null) {
            while (root != null) {
                res.add(root.val);
                stack.push(root);
                root = root.left;
            }
            TreeNode cur = stack.pop();
            root = cur.right;
        }
        return res;
    }
}
  • 与中序遍历的Morris一样,唯一需要注意的是什么时候打印
  • 应该在pre.right == null 中打印,因为这代表了这是我们第一次visit cur
  • 需要注意的是,在找predecessor时的条件 (pre.right != null && pre.right != cur), 缺少后半部分会形成环
//Morris
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        TreeNode cur = root;
        while (cur != null) {
            if (cur.left == null) {
                res.add(cur.val);
                cur = cur.right;
            } else {
                TreeNode pre = cur.left;
                while (pre.right != null && pre.right != cur) {
                    pre = pre.right;
                }
                if (pre.right == null) {     //如果右孩子为空,说明是第一次visit这个节点,print
                    res.add(cur.val);
                    pre.right = cur;
                    cur = cur.left;
                } else {
                    //恢复的时候已经打印完了,不应该在这里打印
                    pre.right = null;
                    cur = cur.right;
                }
            }
        }
        return res;
    }
}

145. Binary Tree Postorder Traversal

//recursive
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        postorder(root, res);
        return res;
    }
    private void postorder(TreeNode root, List<Integer> res) {
        if (root == null) return;
        postorder(root.left, res);
        postorder(root.right, res);
        res.add(root.val);
    }
}
//iterative
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        LinkedList res = new LinkedList<>();
        Stack<TreeNode> stack = new Stack<>();
        while (!stack.empty() || root != null) {
            while (root != null) {
                res.addFirst(root.val);
                stack.push(root);
                root = root.right;
            }
            TreeNode cur = stack.pop();
            root = cur.left;
        }
        return res;
    }
}
  • 后序的Morris就是把前序倒过来,然后插入数的时候插在前面
//Morris
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        LinkedList res = new LinkedList<>();
        TreeNode cur = root;
        while (cur != null) {
            if (cur.right == null) {
                res.addFirst(cur.val);
                cur = cur.left;
            } else {
                //find predecessor
                TreeNode pre = cur.right;
                while (pre.left != null && pre.left != cur) {
                    pre = pre.left;
                }
                if (pre.left == null) {
                    res.addFirst(cur.val);
                    pre.left = cur;
                    cur = cur.right;
                } else {
                    pre.left = null;
                    cur = cur.left;
                }
            }
        }
        return res;
    }
}
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容