基因组数据的重测序分析

我通过查资料获得已知达松维尔拟诺卡氏菌亚种(cardiopsis dassonvillei subsp. dassonvillei)的基因组原始测序序列,我想知道这个亚种与达松维尔拟诺卡氏菌(Nocardiopsis dassonvillei )的基因组相比有哪些不同。

1.需要的软件

软件名:Aspera 版本号:3.6.2.117442
软件名:sratoolkit 版本号:2.9.2
软件名:FastQC 版本号:0.11.7
软件名:Trimmomatic版本号:0.38
软件名:bwa 版本号:0.7.17-r1188
软件名:samtools 版本号:1.7
软件名:Annovar 版本:$Date: 2017-07-17 01:16:48 -0400 (Mon, 17 Jul 2017) $

2.数据下载

达松维尔拟诺卡氏菌亚种(cardiopsis dassonvillei subsp. dassonvillei)的基因组:
ftp://ftp.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByRun/sra/SRR/SRR022/SRR022534/SRR022534.sra

~/.aspera/connect/bin/ascp -T -i /home/lizeguo/.aspera/connect/etc/asperaweb_id_dsa.openssh -k 1 -l 200m anonftp@ftp-private.ncbi.nlm.nih.gov:/sra/sra-instant/reads/ByRun/sra/SRR/SRR022/SRR022534/SRR022534.sra ./Seqs/

达松维尔拟诺卡氏菌(Nocardiopsis dassonvillei )参考基因组序列:
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/877/055/GCA_001877055.1_ASM187705v1/GCA_001877055.1_ASM187705v1_genomic.fna.gz

~/.aspera/connect/bin/ascp -T -i /home/lizeguo/.aspera/connect/etc/asperaweb_id_dsa.openssh -k 1 -l 200m anonftp@ftp-private.ncbi.nlm.nih.gov:/genomes/all/GCA/001/877/055/GCA_001877055.1_ASM187705v1/GCA_001877055.1_ASM187705v1_genomic.fna.gz ~/Seqs/

基因组gff文件

cd ~/Seqs
wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/877/055/GCA_001877055.1_ASM187705v1/GCA_001877055.1_ASM187705v1_genomic.gff.gz

3.主要分析步骤和结果

(一)序列与参考基因组的比对

1.数据文件的格式转换
在NCBI的SRA数据库检索序列号SRR022534查看测序数据类型为454的单末端测序


2018-12-20 10-57-15屏幕截图.png
fastq-dump SRR022534.sra
2018-12-20 11-04-11屏幕截图.png

2.质量评估

mkdir fastqc_result
fastqc SRR022534.fastq 
mv *.zip *.html fastqc_result/
2018-12-20 11-16-21屏幕截图.png

3.测序数据的数据过滤

mkdir trim_out
java -jar ~/BioSofts/Trimmomatic-0.38/trimmomatic-0.38.jar SE -phred33 SRR022534.fastq ./trim_out/SRR011534_out.fastq.gz ILLUMINACLIP:/home/lizeguo/BioSofts/Trimmomatic-0.38/adapters/TruSeq2-PE.fa:2:30:10 SLIDINGWINDOW:5:20 LEADING:20 TRAILING:20 MINLEN:75
2018-12-20 11-29-33屏幕截图.png

4.建立参考基因组索引

gunzip GCA_001877055.1_ASM187705v1_genomic.fna.gz
bwa index GCA_001877055.1_ASM187705v1_genomic.fna
2018-12-20 11-37-59屏幕截图.png

5.测序数据比对到参考基因组得到sam文件

bwa mem GCA_001877055.1_ASM187705v1_genomic.fna trim_out/SRR011534_out.fastq.gz >bwa_mem_SRR011534.sam

6.sam文件转换为bam文件

samtools faidx GCA_001877055.1_ASM187705v1_genomic.fna
samtools view -bhS -t GCA_001877055.1_ASM187705v1_genomic.fna.fai -o bwa_mem_SRR011534.bam bwa_mem_SRR011534.sam 

7.为bam文件排序

samtools sort bwa_mem_SRR011534.bam -o bwa_mem_SRR011534.sorted.bam

8.为bam文件建立索引

samtools index bwa_mem_SRR011534.sorted.bam

9.显示基因组比对情况

samtools tview bwa_mem_SRR011534.sorted.bam GCA_001877055.1_ASM187705v1_genomic.fna
reads比对情况

10.测试参考基因组每个位点或一段区域的测序深度

samtools depth bwa_mem_SRR011534.sorted.bam >>depth.txt
less depth.txt 
每个位点或区域的测序深度

11.统计比对结果

samtools flagstat bwa_mem_SRR011534.sorted.bam
比对结果

结果显示有458257个碱基,有441750个碱基匹配上了,占比96.40%.

(二)变异位点的检测

1.去除PCR重复

samtools rmdup bwa_mem_SRR011534.sorted.bam bwa_mem_SRR011534_nopcr.bam

2.生成bcf文件

samtools mpileup -gf GCA_001877055.1_ASM187705v1_genomic.fna bwa_mem_SRR011534_nopcr.bam >bwa_mem_SRR011534.bcf

3.基因变异检测,得到bwa_mem_SRR011534.snps.bcf文件

bcftools call -vm bwa_mem_SRR011534.bcf -o bwa_mem_SRR011534.variants.bcf
bcftools view -v snps,indels bwa_mem_SRR011534.variants.bcf > bwa_mem_SRR011534.snps.vcf
less bwa_mem_SRR011534.snps.vcf
2018-12-31 13-47-46屏幕截图.png

4.变异位点的过滤

bcftools filter -o bwa_mem_SRR011534.snps.filtered.vcf -i 'QUAL>20 &&DP>5' bwa_mem_SRR011534.snps.vcf

(三)变异基因注释

1.生成annovar输入文件

convert2annovar.pl -format vcf4 bwa_mem_SRR011534.snps.vcf > bwa_mem_SRR011534.snps.avinput

2.自定义注释数据库

gunzip GCA_001877055.1_ASM187705v1_genomic.gff.gz

2.1gff3文件转为GenePred文件

wget http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/gff3ToGenePred
chmod 777 gff3ToGenePred 
./gff3ToGenePred -useName GCA_001877055.1_ASM187705v1_genomic.gff 7055-genome_refGene.txt

2.2修改GenePred文件

cut -f 12 7055-genome_refGene.txt >column1.txt
cut -f 2-15 7055-genome_refGene.txt >column_else.txt
paste column1.txt column_else.txt >7055-genome_new_refGene.txt

2.3为建立每个基因与编码序列对应文件

retrieve_seq_from_fasta.pl -format refGene -seqfile GCA_001877055.1_ASM187705v1_genomic.fna -outfile 7055-genome_new_refGeneMrna.fa 7055-genome_new_refGene.txt

2.4拷贝数据库文件到annovar安装目录humandb文件夹

cp 7055-genome_new_refGene* ~/BioSofts/annovar/humandb/

3.注释变异基因位点,生成avinput.variant_function和avinput.exonic_variant_function后缀的两个结果文件

annotate_variation.pl --geneanno --dbtype refGene --buildver 7055-genome_new  bwa_mem_SRR011534.snps.avinput ~/BioSofts/annovar/humandb/
2018-12-31 15-13-41屏幕截图.png

4.查看结果

less bwa_mem_SRR011534.snps.avinput.variant_function
2018-12-31 15-15-49屏幕截图.png
less bwa_mem_SRR011534.snps.avinput.exonic_variant_function
2018-12-31 15-15-49屏幕截图.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,347评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,435评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,509评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,611评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,837评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,987评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,730评论 0 267
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,194评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,525评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,664评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,334评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,944评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,764评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,997评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,389评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,554评论 2 349

推荐阅读更多精彩内容