算法技巧:位运算

知识点

1. 概念

知识点

按位运算符是把数字看作二进制来进行计算的

2.操作

非操作 ~:把num的补码中的0和1全部取反(0变1,1变0),且符号也取反
与操作&:两个对应位都为1时才为1
或操作 |: 两个对应位中有一个1就为1
异或操作 ^ :不同时为1,相同时为0;满足交换律和结合律
按位左移操作<<:向左移动i位所得到的值,右移为>>

题目

1. 只出现一次的数字

只出现一次的数字

需要线性时间复杂度和不用额外空间;集合、哈希表存储都需要O(n)的空间。需要使用位运算
对于这道题,可使用异或运算 ⊕。异或运算有以下三个性质。

  1. 任何数和 0 做异或运算,结果仍然是原来的数,即 a⊕0=a。
  2. 任何数和其自身做异或运算,结果是 0,即 a⊕a=0。
  3. 异或运算满足交换律和结合律,即 a⊕b⊕a=b⊕a⊕a=b⊕(a⊕a)=b⊕0=b。

可推导为


异或运算
class Solution:
    def singleNumber(self, nums: List[int]) -> int:
        return reduce(lambda x, y: x ^ y, nums)

这里reduce 函数将一个数据集合(链表,元组等)中的所有数据进行下列操作,用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果。

reduce([function], sequence, initial)


reduce

异或解法:异或运算满足交换律,aba=aab=b,因此ans相当于nums[0]nums[1]nums[2]nums[3]nums[4]..... 然后再根据交换律把相等的合并到一块儿进行异或(结果为0),然后再与只出现过一次的元素进行异或,这样最后的结果就是,只出现过一次的元素(0^任意值=任意值)

2. 只出现一次的数字 Ⅱ

image.png

二进制位思路:
答案的第 ii 个二进制位就是数组中所有元素的第 ii 个二进制位之和除以 33 的余数。

为了方便叙述,我们称「只出现了一次的元素」为「答案」。

由于数组中的元素都在 int(即 3232 位整数)范围内,因此我们可以依次计算答案的每一个二进制位是 0 还是 1。

具体地,考虑答案的第 i 个二进制位(ii 从 00 开始编号),它可能为 0 或 1。对于数组中非答案的元素,每一个元素都出现了 3 次,对应着第 ii 个二进制位的 3 个 0 或 3 个 1,无论是哪一种情况,它们的和都是 3 的倍数(即和为 0 或 3)。

image.png

因此,统计所有数字的各二进制位中 1 的出现次数,并对 3求余,结果则为只出现一次的数字。

3. 2的幂

2的幂

可知n的二进制位,最高位为1,其他为0



且n−1 二进制最高位为 0,其余所有位为 1;
则n与n-1的与运算则一直为1


class Solution:
    def isPowerOfTwo(self, n: int) -> bool:
        return n > 0 and n & (n - 1) == 0

4. 子集

image.png

回溯

class Solution:
    def subsets(self, nums: List[int]) -> List[List[int]]:
        res = []
        n = len(nums)
        
        def helper(i, tmp):
            res.append(tmp)
            for j in range(i, n):
                helper(j + 1,tmp + [nums[j]] )
        helper(0, [])
        return res  
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容