Machine learning and game theory is helping fight elephant poaching

Thisarticle is published in collaboration withQuartz.

图1

Between 2009 and 2015,TanzaniaandMozambiquelost more than half of their elephants.

Image:REUTERS/Thomas Mukoya

Writtenby

Ananya

BhattacharyaContributor, Quartz

Published

Friday7 October 2016

Africa’s wildlife is in a constantstate of danger.

Between 2009 and 2015,TanzaniaandMozambiquelost more than halfof their elephants, many of them topoaching forivory smuggling. The decline has propelledAfrican vulture populations, who feed onelephant carcasses, toward extinction too. And attempts atcurtailing poachingand ivory smuggling haven’t helped thedwindling elephant population. InSouth Africa, rhinos are aprized poaching targettoo, for their horns. The attempts tokeep poachers at bay having failed, some conservationists have proposed theexpensive alternative ofairlifting rhinosaway from poaching sites.

Uganda, which remains“heavily implicated”in the illegal ivory trade accordingto the monitoring body CITES, is now testing a more direct way to crack down onthe illegal hunters before they even get to the animals. Using ProtectionAssistant for Wildlife Security (PAWS), a technology combining machine learningand game theory, researchers can predict where poachers may attack and tellrangers where to patrol.

图2

Image: Guardian

“The basic idea is that youhave limited resources, you can’t be everywhere all the time,”UniversityofSouthern Californiaprofessor MilindTambe, who’s leading the initiative, told Quartz. “Where and when should you dopatrol?”

To make their predictions,researchers studied 12 years worth of data collected by rangers, from 2003 to2015, provided by the Wildlife Conservation Society. These included reports ofpast attacks, snare placements, and other illegal activities. The data aren’t perfect,says Tambe: Rangers don’t patrol the entire park, so it’s hard to get acomplete picture. But it’s enough to let a machine learning algorithm makeintelligent guesses about where poachers will strike in future.

When creating patrol routesfor rangers, “we want to randomize our patrols because we ourselves don’t wantto become predictable to the poachers,” Tambe said. That’s where game theorycomes in. It uses mathematical models to evaluate how rational human beingswould act, to then suggest routes that won’t be easily predictable.

The US Coastguard,Transportation Security Administration (TSA), the Federal Air Marshals Service,LA Sheriff’sDepartment, and other organizations have been using Tambe’s AI-game theorycombination technology to randomize their patrols since the early 2000s, hesays. The concept was tailored for wildlife preservation in 2014 and deployedfor testing inMalaysiain mid-2015. The current large-scale Ugandan tests inQueenElizabethNational Parkare backedby US organizations like the National Science Foundation and the Army ResearchOffice.

Rangers using PAWS inUgandahavefound 10 antelope traps and elephant snares in the past month, “a far betterscore card than they could usually expect,”Reuters reported. As robust as the technologymight be in theory, factors like poor mobile internet connections can get inthe way of communicating the results from PAWS that are used to direct rangers’routes. And there’s another threat: Armed poachers are quick topoint their gunsat the rangers.

.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,437评论 0 23
  • 全球首款FPS+MOBA手游《王者军团》与玩家见面已有近半年之久,用精致的人物设计、次世代的游戏画面、宏大的故事背...
    天之游阅读 143评论 0 0
  • 许久未见未联系的朋友突然打来电话,幸好我记得他现在在什么地方,不然看到那来自远方的陌生来电第一直觉便是骚扰电话立马...
    孤夜行阅读 390评论 0 0
  • 跟了一个下午的门诊 孙老师一下午看了100左右个病人 从刚开始不知道怎么维持秩序 到最后孙老师加班到很晚 头都出汗...
    长白山的鹿阅读 163评论 0 0