特征工程的几种常见方法

特征归一化

目的:将所有的数值型特征归一化到一个固定的区间

Why:以使用梯度下降算法作为优化算法的模型为例,归一化好的特征能够帮助模型更快的迭代,找到最优解

How: 线性归一化、均值归一化

缺点:对于梯度下降算法的模型比较有用,对决策树一类的模型,无需归一化

特征编码

目的:有些模型转化成数值型特征才能继续工作

Why: 对于某些字符串特征无法直接编码,需要转化成数字编码

How:

  • 序号编码:将编码转化成多个序号 比如 高、中、低 对应 1 2 3
  • 独热编码:高、中、低 分别对应(1,0,0)、(0,1,0)、(0,0,1)
  • Hash编码:
  • 数字编码: 目标字符串在给定字符串中有相同字符的个数
  • 二进制编码:高、中、低 分别对应 00、01、10
  • Helmert Contrast、Sum Contrast
  • Embedding 编码,能体现相似实体之间关系的编码方式
  • NaN编码:为空值编码
  • 多项式编码:多项式核可以解决线性算法无法解决 XOR问题
  • 范围编码:每个范围算一个值
  • 分层范围编码,将独热编码与范围编码相组合
  • 限定值的编码:求根号,求log等
  • 事件编码:节假日,星期日等编码
  • 时空编码:GPS-coordinates, cities,countries, addresses

缺点:编码种类众多,如何选择适合的编码是个问题

自然语言的特征清洗过程

组合特征

目的:如果一类特征有特别多的特征类别,容易发生过拟合,可以使用基于决策树的特征组合寻找方法,将特征判别组合成一条决策树的路径,在路径上进行二分类,得到特征的选择。

特征提取

目的:找到一个线性变换,在降低维度的情况下,使得关注的结果最优

LDA:线性判别分析

​ 大致思路:将两部分内容映射到一个超平面上,使得同类样本之间的协方差最小,不同类样本集合的中心距离最大,可以用作降维,或者进行有监督分类

PCA:

​ 大致思路:选择投影后使得数据方差最大的方向来投影,将原始数据转化为一组各维度线性无关的表示,与LDA最大区别为无监督,收益函数是重构后的矩阵各字段两两之间协方差为0,字段方差尽可能大

ICA:

​ 大致思路:

特征选择

3.1 相关性分析

  1. GBDT 特征分析,选择信息增益最大的特征
  2. 尝试组合不同时间窗口的模型组合,最后再来做融合,模型效果会有提升
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容