贪婪算法和MST

贪婪算法是指,在对问题求解时,总是做出在当前看来是最好的选择。 也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解

贪心算法在有最优子结构的问题中尤为有效。最优子结构的意思是局部最优解能决定全局最优解。简单地说,问题能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。

Prim和Dijkstra的算法之间的区别?

Dijkstra和Prim算法的区别-附具体步骤
Prim算法通常用于求MST(Minimum Spanning Tree,最小生成树),最小成本路径(通过考虑各条路径上的weight)。
Dijkstra算法考虑最短路径数。不能保证MST,因此成本>MST。

Dijsktra's algorithm finds the minimum distance from node i to all nodes (you specify i). So in return you get the minimum distance tree from node i.

Prims algorithm gets you the minimum spaning tree for a given graph. A tree that connects all nodes while the sum of all costs is the minimum possible.
So with Dijkstra you can go from the selected node to any other with the minimum cost, you don't get this with Prim's

(Never believe anything I said. Only believe it if I prove it.)

Furthest(Farthest) in future算法

http://notebook.xyli.me/CS161/Intro-to-greedy-algo1/
一片很好的博文介绍了贪婪算法在Caching中的应用。

Prim和Kruskal生成MST的比较

什么是最小生成树(MST):
Given: Connected graph, with real valued edges weights.
MST: a subset of edges T - a spanning tree (连接了所有的点)whose sum of edge weights is minimized.

比较
算法流程示意图

摘要如下(侵删)

Prim

Prim算法是这样来做的:

1)首先以一个结点作为最小生成树的初始结点,然后以迭代的方式找出与最小生成树中
2)各结点权重最小边,并加入到最小生成树中。加入之后如果产生
3)回路则跳过这条边,选择下一个结点。当所有结点都加入到最小生成树中之后,就找出了连通图中的最小生成树了。

Kruskal算法与Prim算法的不同之处在于,Kruskal在找最小生成树结点之前,需要对所有权重边做从小到大排序。将排序好的权重边依次加入到最小生成树中,如果加入时产生回路就跳过这条边,加入下一条边。当所有结点都加入到最小生成树中之后,就找出了最小生成树。

Prim算法中寻找的是下一个与MST中任意顶点相距最近的顶点;
Dijkstra算法寻找的是下一个离给定顶点(单源)最近的顶点。
另外,当有两条具有同样的最小权值的边可供选择时,任选一条即可,所以构造的MST不是惟一的

Prim算法和Dijkstra算法十分相似,惟一的区别是: Prim算法要寻找的是离已加入顶点距离最近的顶点;Dijkstra算法是寻找离固定顶点距离最近的顶点。

所以Prim算法的时间复杂度分析与Dijkstra算法相同,都是 O(|V^2|)

【拓】:Kruskal算法:http://baike.baidu.com/link?url=MchMLaw4a3nLu3bWSoEUEak-DYbM8n0H27ANKE5-Gv_frudxAvGfsqdpNRqDtdB0 </pre>

克鲁斯卡尔(Kruskal)算法(只与边相关)

算法描述:克鲁斯卡尔算法需要对图的边进行访问,所以克鲁斯卡尔算法的时间复杂度只和边又关系,可以证明其时间复杂度为O(eloge)。

算法过程:

1.将图各边按照权值进行排序

2.将图遍历一次,找出权值最小的边,(条件:此次找出的边不能和已加入最小生成树集合的边构成环),若符合条件,则加入最小生成树的集合中。

不符合条件则继续遍历图,寻找下一个最小权值的边。

3.递归重复步骤1,直到找出n-1条边为止(设图有n个结点,则最小生成树的边数应为n-1条),算法结束。得到的就是此图的最小生成树。

克鲁斯卡尔(Kruskal)算法因为只与边相关,则适合求稀疏图的最小生成树。而prime算法因为只与顶点有关,所以适合求稠密图的最小生成树。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容