Multi-Sample Dropout

1. 模型结构

orginal dropout  : 对单个样本,进行单次drop out。

original dropout vs multi-sample dropout

2. 思想

    stacking方法中的子模型。事实证明,用多个子模型做模型融合可以提高模型的性能。

    训练时,对原始数据进行变换,创建出多个分身。分身可能是带噪音,可能是不完整(此方法)。从而提高泛化能力。

3. 实现方法

    训练阶段,每次dropout首先会随机的选取50%(这个比例可以自己设置)的神经元,其他50%被丢弃。

    通过多次的dropout,从特征中选择了不同的特征子集进行训练,相当于重采样。

    再通过共享的全连接层和loss层。

    loss:每条样本,多个分身,得到的多个loss的平均值最小。

4. 优点

    加快收敛,性能提升。dropout只使用在最后的几层,而全连接层的训练时间较快。因此,对比更大的 mini-batch,虽然可以达到相同的效果,但是实际上会增加计算的耗时。

    实现简单:在 dropout 层后复制部分训练网络,并在这些复制的全连接层之间共享权重就可以了,无需新运算符。

5. 发散

    传统的机器学习算法,如排序中常用的树模型。stack思想下,得到了不同的树。如果就用一棵树呢??泛化能力能变强吗?

    Stacking是通过一个元分类器或者元回归器来整合多个分类模型或回归模型的集成学习技术。基础模型利用整个训练集做训练,元模型将基础模型的特征作为特征进行训练。(N->1) 。基础模型通常包含不同的学习算法,因此stacking通常是异质集成。

6. 缺点

    1)模型的设计,存在训练和预测不一致问题。训练时,Dropout 往(某些层的)输入加上了乘性噪声。而预测时,理论上,应该是对同一个输入多次传入模型中(模型不关闭Dropout),然后把多次的预测结果平均值作为最终的预测结果。实际上,预测的时候用的是关闭Dropout的单模型,两者未必等价,这就是Dropout的训练预测不一致问题。

    2)损失函数的设计,只有交叉熵。如果只有交叉熵这一项,模型的训练结果是“不同的Dropout下,目标类的得分都大于非目标类的得分”。

链接:https://kexue.fm/archives/8496

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容

  • 1 为什么要对特征做归一化 特征归一化是将所有特征都统一到一个大致相同的数值区间内,通常为[0,1]。常用的特征归...
    顾子豪阅读 6,332评论 2 22
  • 1 为什么要对特征做归一化 特征归一化是将所有特征都统一到一个大致相同的数值区间内,通常为[0,1]。常用的特征归...
    顾子豪阅读 1,335评论 0 1
  • 一. 数学基础 1. 最大似然估计,最大后验概率、贝叶斯估计 参考: https://blog.csdn.net/...
    木木xixi1997阅读 1,478评论 0 1
  • 1、数据量比较大的时候,svm和lr哪个更快? svm适用于相对稀疏的数据,所以xgb的效果比svm要好。面试官也...
    DaiMorph阅读 2,282评论 0 0
  • id: 9vyvlNjQhL0ZiLxDj0Apotitle: Kerasdesc: 《Deep Learning...
    walkerwzy阅读 597评论 0 0