无标题文章

In this module,we focused on using regression to predict a continuous value(house prices) from features of the house (square feet of living space,numbre of bedrooms,..).We also built an iPython notebook for predicting house prices,using data from King County,USA,the region where the city of Seattle is located.
In this assignment ,we are going to build a more accurate regression model for predicting house prices by including more features of the house. In the process,we will also become more familiar with how the Python langugae can be used for data exploation,data transformations and machine learning.These techniques will be key to building intelligent applications.
Follow the rest of the instructions on this page wo complete your program.When you are done,instead of uploading your code, you will answer a series of quiz questions(see the quiz after this reading)to document your completion of this assignment. The instructions will indicate what data to collect for answering the quiz.

Learning outcomes

  • Execute programs with the iPython notebook
  • Load and transform real,tabular data
  • Compute summaries and statistics of the data
  • Buil a regression model using features of the data

Resources you will need

You will need to install the software tools or use the free Amazon EC2 Machine. Instructions for both options are provided in the reading for Module 1.

Now you are ready to get started!

What you will do

Now you are ready! We are going do three tasks in this assignment.There are 3 results you need to gather along the way to enter into the quiz after this reading

  1. Selection and summary statistics: In the notebook we covered in the module, we discovered which neighborhood(zip code)of Seattle had the highest average house sale price.Now ,take the sales data,select only the houses with this zip code,and compute the average price.Save this result to answer the quiz at the end.
    2.Filtering data:One of the key features we used in our model was the number of square feet of living sqace in the house.For this part,we are going to use the idea of filtering data.
  • In particular,we are going to use logical filters to select rows of an SFrame. You can find more info in the LogicalFile...
  • Using such filter,first select the houses that have sqft_living higher than 2000 sqft but no larger than 4000 sqft
  • What fraction of the all houses have sqftliving in this range? Save this result to answer the quiz at the end
    3.Building a regression model with several more feature: In the sample notebook,we build two regression models to predict house prices, one using just'sqft_living' and other using a few more features, we called this set []
    Now,going back to the original dataset,youwilll build a model using the following features:

Note that using copy and paste from this webpage to the Ipython Notebook sometimes does not work perfectly in some operating systems,especially on Windows.For example,the quotes defining strings myay not paste correctly.Please check carefully if you use copy&paste.

  • Compute the RMSE(root mean squared error ) on the test_data for the model using just my_features,and for the one using advanced_features.
    Note1 : both models must be trained on the original sales dataset ,not the filtered one.
    note2: when doing the train-test split,make sure you use seed=0,so you get the same training and test sets,and thusresults,as we do.
    Note3: in the module we discussed residual sum of squares(RSS) as an error metric for regression,but graphlab create uses root mean squared error.These are two common measures of error regression,and RMSE is simply the square root the the mean RSS:
    RMSE = 根号()RSS/N)
    where N is the number of data points. RMSE can be more intutive than RSS,since its units are the same as that of the target column in the data,in our case the unit is dollars,and doesn't grow with the number of data points,like the RSS does.
    Important note:when answering the question below using GraphLab Create,when you call linerar_regression.create() function,make sure you use the para
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容

  • 与“模拟器”运行效果不同,在真机上面直接用 是不调用 这些代理方法的,更不会加载h5界面。 查了相关文档以及百度上...
    旧雨伞时阅读 595评论 0 0
  • 请你先安装chrome浏览器,并且设为你的默认浏览器。下载地址谷歌的chrome浏览器 在chrome浏览器中打开...
    masakakaikai阅读 2,748评论 5 3
  • 我妈说我今年命中犯桃花,应料有许多男生围绕身边。转念一想,今年还真是一堆男生围绕,因为玩了一个特别雄性的游戏。我很...
    雀舞阅读 168评论 0 0
  • 我们可以在图1中看到img的路径是动态生成的,图片的路径写在了一个json对象中,这样看上去好像没有什么问题,但是...
    shirley媛阅读 5,069评论 0 2