Python-分词&云图

jieba分词

import jieba

seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list))  # 全模式

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list))  # 精确模式

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
print(", ".join(seg_list))

输出:
Full Mode: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学

Default Mode: 我/ 来到/ 北京/ 清华大学

,小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

一般用默认的精确模式就可以。

使用add_word(word, freq=None, tag=None)del_word(word)调整词频。

wordcloud云图

正常生成云图

from wordcloud import WordCloud

wc = WordCloud(font_path='simsun.ttc',
               background_color="white", max_words=800, max_font_size=800, 
               random_state=200, collocations=False).generate(text)

根据指定背景图生成云图

image = Image.open(r'2.jpg')
graph = np.array(image)
wc = WordCloud(font_path='simsun.ttc',
               background_color="white", max_words=200, mask=graph,
               max_font_size=1000, random_state=200, collocations=False).generate(text)

进行显示

import matplotlib.pyplot as plt

plt.imshow(wc)
plt.axis('off')
plt.show()

保存云图两种方式

plt.savefig("H:/temp/temp.jpg",dpi=200) #默认尺寸是和终端中显示差不多的缩略版的图(大小432×288),可以通过dpi调节精度改善清晰度,
wc.to_file('pic.jpg')                   #输出的是每个字都精确显示的完整云词图,非常清晰

所有参数及方法

font_path : string //字体路径,需要展现什么字体就把该字体路径+后缀名写上,如:font_path = '黑体.ttf'

width : int (default=400) //输出的画布宽度,默认为400像素

height : int (default=200) //输出的画布高度,默认为200像素

prefer_horizontal : float (default=0.90) //词语水平方向排版出现的频率,默认 0.9 (所以词语垂直方向排版出现频率为 0.1 )

mask : nd-array or None (default=None) //如果参数为空,则使用二维遮罩绘制词云。如果 mask 非空,设置的宽高值将被忽略,遮罩形状被 mask 取代。除全白(#FFFFFF)的部分将不会绘制,其余部分会用于绘制词云。

scale : float (default=1) //按照比例进行放大画布,如设置为1.5,则长和宽都是原来画布的1.5倍。

min_font_size : int (default=4) //显示的最小的字体大小

font_step : int (default=1) //字体步长,如果步长大于1,会加快运算但是可能导致结果出现较大的误差。

max_words : number (default=200) //要显示的词的最大个数

stopwords : set of strings or None //设置需要屏蔽的词,如果为空,则使用内置的STOPWORDS

background_color : color value (default=”black”) //背景颜色,如background_color='white',背景颜色为白色。

max_font_size : int or None (default=None) //显示的最大的字体大小

mode : string (default=”RGB”) //当参数为“RGBA”并且background_color不为空时,背景为透明。

relative_scaling : float (default=.5) //词频和字体大小的关联性

color_func : callable, default=None //生成新颜色的函数,如果为空,则使用 self.color_func

regexp : string or None (optional) //使用正则表达式分隔输入的文本

collocations : bool, default=True //是否包括两个词的搭配

colormap : string or matplotlib colormap, default=”viridis” //给每个单词随机分配颜色,若指定color_func,则忽略该方法。



fit_words(frequencies)  //根据词频生成词云
generate(text)  //根据文本生成词云
generate_from_frequencies(frequencies[, ...])   //根据词频生成词云
generate_from_text(text)    //根据文本生成词云
process_text(text)  //将长文本分词并去除屏蔽词(此处指英语,中文分词还是需要自己用别的库先行实现,使用上面的 fit_words(frequencies) )
recolor([random_state, color_func, colormap])   //对现有输出重新着色。重新上色会比重新生成整个词云快很多。
to_array()  //转化为 numpy array
to_file(filename)   //输出到文件

附上爬取知乎20万用户职业的云图

知乎职业
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,204评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,091评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,548评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,657评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,689评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,554评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,302评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,216评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,661评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,851评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,977评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,697评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,306评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,898评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,019评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,138评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,927评论 2 355

推荐阅读更多精彩内容

  • 目录 1.jieba下载安装 2.算法实现 3.分词功能 1.jieba下载安装 Jieba是一个中文分词组件,...
    云上小白鸽阅读 4,342评论 0 2
  • 注:参考文档 一、在线词云图工具# (1)、使用### 在正式使用jieba分词之前,首先尝试用在线分词工具来将自...
    DearIreneLi阅读 6,046评论 1 8
  • 1、分词数据源基于之前采集公共管理学院老师的数据,一共得到10个字段。本次分词是对大文本字段进行分词,因此将所得到...
    _dami阅读 2,197评论 1 1
  • 不知道究竟是我选择了这些书籍,还是这些书籍选择了我。最近接触的所有小说,都会触碰到一个命题:死亡。但这是生命的常态...
    懒兔少女阅读 248评论 0 0
  • 已经进入这家互联网公司已经一年多,在各种混乱的工作里找到适合自己的工作模式,同时也颠覆了一些自己的固有想法。 好的...
    芙筱筱Elaine阅读 416评论 4 3