Redis的应用

一、缓存

1.缓存穿透

查询一个不存在的数据,DB查不到数据,不会写入缓存,导致每次请求都查DB

解决方案一:缓存空数据

缓存空数据,查询返回的数据为空,仍把这个空结果进行缓存{key:1,value:null}

缺点:消耗内存,一旦数据库确实存在数据,就会造成缓存与数据库不一致的问题

解决方案二:布隆过滤器

先查询布隆过滤器,不存在直接返回;布隆过滤器存在,查redis。(缓存预热时,需要预热布隆过滤器)

bitmap(位图):相当于是一个以(bit)位为单位的数组,数组中每个单元只能存储二进制数0或1

布隆过滤器作用:布隆过滤器可以用于检索一个元素是否在一个集合中。

image.png

  • 存储数据:id为1的数据,通过多个hash函数获取hash值,根据hash计算数组对应位置改为1
  • 查询数据:使用相同hash函数获取hash值,判断对应位置是否都为1

可能存在误判:


image.png

误判率:数组越小误判率就越大,数组越大误判率就越小,但是同时带来了更多的内存消耗。

布隆过滤器实现方案

  • Redisson
  • Guava

可以设置误判率,一般设置为5% boomFilter.tryInit(size,0.05)

缺点:实现复杂,存在误判

2.缓存击穿

给某一个key设置了过期时间,当key过期的时候,恰好这时间点对这个key有大量的并发请求过来,这些并发的请求可能会瞬间把DB压垮

解决方案一:互斥锁

image.png

性能差,强一致

解决方案二:逻辑过期

不设置键的过期时间,把过期时间作为value中的一个属性(逻辑时间)存进去。


image.png

在线程2没成功把新数据写入缓存之前,其他线程从缓存中获取的都是已经逻辑过期的旧数据。

性能好,弱一致

3.缓存雪崩

指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力

解决方案

  • 给不同的Key的TTL添加随机值
  • 利用Redis集群提高服务的可用性(哨兵,分片集群)
  • 给缓存业务添加降级限流策略(ngxin或spring cloud gateway)
  • 给业务添加多级缓存(Guava或Caffeine)

二、双写一致性

双写一致性:当修改了数据库的数据也要同时更新缓存的数据,缓存和数据库的数据要保持一致

  • 读操作:缓存命中,直接返回;缓存未命中查询数据库,写入缓存,设定超时时间
  • 写操作:延迟双删(删缓存→更新数据库→延时→删缓存)

先删除缓存,再更新数据库:


先删除缓存,再更新数据库.png

此时缓存中写入的还是旧的数据,因为线程1还未更新数据库

先更新数据库,再删除缓存


先更新数据库,再删除缓存.png

此时缓存中写入的还是旧数据,线程2还未更新数据库

1.强一致

使用分布式锁


image.png

读多写少场景:

  • 共享锁:读锁readLock,加锁之后,其他线程可以共享读操作
  • 排他锁:独占锁writeLock也叫,加锁之后,阻塞其他线程读写操作

2.弱一致

使用mq异步通知保证数据的最终一致性


image.png

基于Canal的异步通知,基于mysql的主从同步来实现的。
二进制日志(BINLOG)记录了所有的 DDL(数据定义语言)语句和 DML(数据操纵语言)语句,但不包括数据查询(SELECT、SHOW)语句。


image.png

cannal没有侵入性,利用canal中间件,不需要修改业务代码,伪装为mysql的一个从节点,canal通过读取binlog数据更新缓存

三、持久化

1.RDB

RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据

  • save:主进程执行RDB,会阻塞所有命令
  • bgsave:开启子进程执行RDB,避免主进程受影响

Redis内部有触发RDB的机制,redis.conf:

# 900秒内,如果至少有1个key被修改,则执行bgsave 
save 900 1  
save 300 10  
save 60 10000 

RDB执行原理

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。

fork采用的是copy-on-write技术:

  • 当主进程执行读操作时,访问共享内存;
  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作。
image.png

页表:记录虚拟地址与物理地址的映射关系

2.AOF

AOF全称为Append Only File(追加文件)。
Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"

AOF的命令记录的频率也可以通过redis.conf文件来配:

# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always 
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec 
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no
配置项 刷盘时机 优点 缺点
Always 同步刷盘 可靠性高,几乎不丢数据 性能差
everysec 每秒刷盘 性能适中 最多丢失1秒数据
no 操作系统控制 性能好 可靠性较差,可能丢失大量数据

因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

Redis会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写�
auto-aof-rewrite-percentage 100� # 之前1M,现在2M,触发重写
# AOF文件体积最小多大以上才触发重写 �
auto-aof-rewrite-min-size 64mb 

在实际开发中会结合两者来使用

RDB AOF
持久化方式 定时对整个内存做快照 记录每一次执行的命令
数据完整性 不完整,两次备份之间会丢数据 相对完整,取决于刷盘策略
文件大小 会有压缩,文件体积小 记录命令,文件体积大
宕机恢复速度
数据恢复优先级 低,因为数据完整性不如AOF 高,数据完整性高
系统资源占用 高,大量CPU和内存消耗 低,主要是磁盘IO资源,但AOF重写时会占用大量CPU和内存资源
使用场景 可以容忍数分钟的数据丢失,追求更快的启动速度 对数据安全性较高

四、Redis的过期策略

Redis对数据设置数据的有效时间,数据过期以后,就需要将数据从内存中删除掉。可以按照不同的规则进行删除,这种删除规则就被称之为数据的删除策略(数据过期策略)。

1.惰性删除

设置该key过期时间后,不去管它,当需要该key时,再检查其是否过期,如果过期,就删掉它,反之返回该key

  • 优点 :对CPU友好,只会在使用该key时才会进行过期检查,对于很多用不到的key不用浪费时间进行过期检查
  • 缺点 :对内存不友好,如果一个key已经过期,但是一直没有使用,那么该key就会一直存在内存中,内存永远不会释放

2.定期删除

定期删除:每隔一段时间,就对一些key进行检查,删除里面过期的key
(从一定数量的数据库中取出一定数量的随机key进行检查,并删除其中的过期key)。

定期清理有两种模式:

  • SLOW模式:是定时任务,执行频率默认为10hz,每次不超过25ms,以通过修改配置文件redis.conf 的hz 选项来调整这个次数
  • FAST模式:执行频率不固定,但两次间隔不低于2ms,每次耗时不超过1ms

优缺点:

  • 优点:可以通过限制删除操作执行的时长和频率来减少删除操作对 CPU 的影响。另外定期删除,也能有效释放过期键占用的内存。
  • 缺点:难以确定删除操作执行的时长和频率。

Redis的过期删除策略:惰性删除 + 定期删除两种策略进行配合使用

五、Redis数据淘汰策略

当Redis中的内存不够用时,此时在向Redis中添加新的key,那么Redis就会按照某一种规则将内存中的数据删除掉,这种数据的删除规则被称之为内存的淘汰策略。

1.8种不同数据淘汰策略

Redis支持8种不同策略来选择要删除的key:

  • noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略。
  • volatile-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
  • allkeys-random:对全体key ,随机进行淘汰。
  • volatile-random:对设置了TTL的key ,随机进行淘汰。
  • allkeys-lru: 对全体key,基于LRU算法进行淘汰
  • volatile-lru: 对设置了TTL的key,基于LRU算法进行淘汰
  • allkeys-lfu: 对全体key,基于LFU算法进行淘汰
  • volatile-lfu: 对设置了TTL的key,基于LFU算法进行淘汰

2.LRU和LFU

LRU(Least Recently Used)最近最少使用。
用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
key1是在3s之前访问的, key2是在9s之前访问的,删除的就是key2

LFU(Least Frequently Used)最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高。
key1最近5s访问了4次, key2最近5s访问了9次, 删除的就是key1

3.数据淘汰策略-使用建议

  • 优先使用 allkeys-lru 策略。充分利用 LRU 算法的优势,把最近最常访问的数据留在缓存中。如果业务有明显的冷热数据区分,建议使用。
  • 如果业务中数据访问频率差别不大,没有明显冷热数据区分,建议使用 allkeys-random,随机选择淘汰。
  • 如果业务中有置顶的需求,可以使用 volatile-lru 策略,同时置顶数据不设置过期时间,这些数据就一直不被删除,会淘汰其他设置过期时间的数据。
  • 如果业务中有短时高频访问的数据,可以使用 allkeys-lfu 或 volatile-lfu 策略。

Q:数据库有1000万数据 ,Redis只能缓存20w数据, 如何保证Redis中的数据都是热点数据 ?
A:使用allkeys-lru(挑选最近最少使用的数据淘汰)淘汰策略,留下来的都是经常访问的热点数据

Q:Redis的内存用完了会发生什么?
A:主要看数据淘汰策略是什么;如果是默认的配置( noeviction ),会直接报错

六、Redis分布式锁

Redis实现分布式锁主要利用Redis的setnx命令。
setnx是SET if not exists(如果不存在,则 SET)的简写。

1.使用

获取锁:

# 添加锁,NX是互斥、EX是设置超时时间
SET lock value NX EX 10

释放锁:

# 释放锁,删除即可
DEL key

2.可重入

redisson实现的分布式锁-可重入:
利用hash结构记录线程id和重入次数

多个锁重入需要判断是否是当前线程,在redis中进行存储的时候使用的hash结构,来存储线程信息和重入的次数。

3.主从一致性问题

Redisson锁不能解决主从数据一致的问题,可以使用RedLock解决

RedLock(红锁):不能只在一个redis实例上创建锁,应该是在多个redis实例上创建锁(n / 2 + 1),避免在一个redis实例上加锁。

  • 实现复杂
  • 性能差

需要强一致可以使用zk

七、Redis集群方案

1.主从复制

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

image.png

Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid

offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

1.1 全量同步

1.从节点请求主节点同步数据(replication id、 offset )
2.主节点判断是否是第一次请求,是第一次就与从节点同步版本信息(replication id和offset)
3.主节点执行bgsave,生成rdb文件后,发送给从节点去执行
4.在rdb生成执行期间,主节点会以命令的方式记录到缓冲区(一个日志文件)
5.把生成之后的命令日志文件发送给从节点进行同步

全量同步.png

1.2 增量同步

1.从节点请求主节点同步数据,主节点判断不是第一次请求,不是第一次就获取从节点的offset值
2.主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步

增量同步.png

2.哨兵模式

Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。


image.png

哨兵的作用:

  • 监控:Sentinel 会不断检查master和slave是否按预期工作
  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
  • 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端
2.1服务状态监控

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

  • 主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
  • 客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。

2.2 哨兵选主规则

  • 首先判断主与从节点断开时间长短,如超过指定值就排除该从节点
  • 然后判断从节点的slave-priority值,越小优先级越高
    如果slave-prority一样,则判断slave节点的offset值,越大优先级越高
  • 最后是判断slave节点的运行id大小,越小优先级越高。
image.png

2.3 脑裂问题

image.png

集群脑裂是由于主节点和从节点和sentinel处于不同的网络分区,使得sentinel没有能够心跳感知到主节点,所以通过选举的方式提升了一个从节点为主,这样就存在了两个master,就像大脑分裂了一样。
这样会导致客户端还在老的主节点那里写入数据,新节点无法同步数据,当网络恢复后,sentinel会将老的主节点降为从节点,这时再从新master同步数据,就会导致数据丢失。

解决:可以修改redis的配置,设置最少的从节点数量以及缩短主从数据同步的延迟时间,达不到要求就拒绝请求,就可以避免大量的数据丢失

redis中有两个配置参数:

  • min-replicas-to-write 1 表示最少的salve节点为1个
  • min-replicas-max-lag 5 表示数据复制和同步的延迟不能超过5秒

3.分片集群

主从和哨兵可以解决高可用、高并发读的问题。
但是依然有两个问题没有解决:

  • 海量数据存储问题
  • 高并发写的问题

3.2 分片集群特征

使用分片集群可以解决上述问题,分片集群特征:

  • 集群中有多个master,每个master保存不同数据
  • 每个master都可以有多个slave节点
  • master之间通过ping监测彼此健康状态
  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点
image.png

3.2数据读写

Redis 分片集群引入了哈希槽的概念,Redis 集群有 16384 个哈希槽,每个 key通过 CRC16 校验后对 16384 取模来决定放置哪个槽,将16384个插槽分配到不同的实例,集群的每个节点负责一部分 hash 槽。

读写数据:根据key的有效部分计算哈希值,对16384取余(有效部分,如果key前面有大括号,大括号的内容就是有效部分,如果没有,则以key本身做为有效部分)余数做为插槽,寻找插槽所在的实例

image.png

八、Redis为什么这么快

  • Redis是纯内存操作,执行速度非常快
  • 采用单线程,避免不必要的上下文切换可竞争条件,多线程还要考虑线程安全问题
  • 使用I/O多路复用模型,非阻塞IO

8.1 I/O多路复用模型

Redis是纯内存操作,执行速度非常快,它的性能瓶颈是网络延迟而不是执行速度, I/O多路复用模型主要就是实现了高效的网络请求。

  • 用户空间和内核空间
  • 常见的IO模型
    • 阻塞IO(Blocking IO)
    • 非阻塞IO(Nonblocking IO)
    • IO多路复用(IO Multiplexing)
  • Redis网络模型

8.2 用户空间和内核空间

Linux系统中一个进程使用的内存情况划分两部分:

  • 内核空间:可以执行特权命令(Ring0),调用一切系统资源
  • 用户空间:只能执行受限的命令(Ring3),而且不能直接调用系统资源,必须通过内核提供的接口来访问
image.png

Linux系统为了提高IO效率,会在用户空间和内核空间都加入缓冲区:

  • 写数据时,要把用户缓冲数据拷贝到内核缓冲区,然后写入设备
  • 读数据时,要从设备读取数据到内核缓冲区,然后拷贝到用户缓冲区

8.3 阻塞IO

顾名思义,阻塞IO就是两个阶段都必须阻塞等待:

阶段一:

  • 用户进程尝试读取数据(比如网卡数据)
  • 此时数据尚未到达,内核需要等待数据
  • 此时用户进程也处于阻塞状态

阶段二:

  • 数据到达并拷贝到内核缓冲区,代表已就绪
  • 将内核数据拷贝到用户缓冲区
  • 拷贝过程中,用户进程依然阻塞等待
  • 拷贝完成,用户进程解除阻塞,处理数据
image.png

阻塞IO模型中,用户进程在两个阶段都是阻塞状态。

8.4 非阻塞IO

非阻塞IO的recvfrom操作会立即返回结果而不是阻塞用户进程。

阶段一:

  • 用户进程尝试读取数据(比如网卡数据)
  • 此时数据尚未到达,内核需要等待数据
  • 返回异常给用户进程
  • 用户进程拿到error后,再次尝试读取
  • 循环往复,直到数据就绪

阶段二:

  • 将内核数据拷贝到用户缓冲区
  • 拷贝过程中,用户进程依然阻塞等待
  • 拷贝完成,用户进程解除阻塞,处理数据
image.png

非阻塞IO模型中,用户进程在第一个阶段是非阻塞,第二个阶段是阻塞状态。虽然是非阻塞,但性能并没有得到提高。而且忙等机制会导致CPU空转,CPU使用率暴增。

8.5 IO多路复用

利用单个线程来同时监听多个Socket ,并在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。

阶段一:

  • 用户进程调用select,指定要监听的Socket集合
  • 内核监听对应的多个socket
  • 任意一个或多个socket数据就绪则返回readable
  • 此过程中用户进程阻塞

阶段二:

  • 用户进程找到就绪的socket
  • 依次调用recvfrom读取数据
  • 内核将数据拷贝到用户空间
  • 用户进程处理数据
image.png

IO多路复用是利用单个线程来同时监听多个Socket ,并在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。不过监听Socket的方式、通知的方式又有多种实现,常见的有:

  • select
  • poll
  • epoll

差异:

  • select和poll只会通知用户进程有Socket就绪,但不确定具体是哪个Socket ,需要用户进程逐个遍历Socket来确认
  • epoll则会在通知用户进程Socket就绪的同时,把已就绪的Socket写入用户空间

8.6 Redis网络模型

Redis通过IO多路复用来提高网络性能,并且支持各种不同的多路复用实现,并且将这些实现进行封装, 提供了统一的高性能事件库

使用I/O多路复用结合事件的处理器来应对多个Socket请求

  • 连接应答处理器
  • 命令回复处理器:在Redis6.0之后,为了提升更好的性能,使用了多线程来处理回复事件
  • 命令请求处理器:在Redis6.0之后,将命令的转换使用了多线程,增加命令转换速度,在命令执行的时候,依然是单线程
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,651评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,468评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,931评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,218评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,234评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,198评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,084评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,926评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,341评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,563评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,731评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,430评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,036评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,676评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,829评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,743评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,629评论 2 354

推荐阅读更多精彩内容

  • 1.分布式锁 RedissonLock分布式锁1)加锁是通过Lua脚本实现的,如果分布式锁不存在,则会通过hset...
    王侦阅读 987评论 1 18
  • Redis开创了一种新的数据存储思路,使用Redis,我们不用在面对功能单调的数据库时,把精力放在如何把大象放进冰...
    tl薰风阅读 749评论 0 0
  • 1 nosql数据库简介 NoSQL是Not Only SQL 的缩写,意即"不仅仅是SQL"的意思,泛指非关系型...
    烦远远阅读 369评论 0 0
  • 一.redis介绍 (1)概念:属于非关系型存储数据库——基于kv(键值存储)的开源的内存存储,数据库结构存储。经...
    楠人帮阅读 724评论 0 6
  • 【背景说明】 某企业是为城市高端用户提供高品质蔬菜生鲜服务的初创企业,创业初期为快速开展业务,该企业采用轻量型的开...
    抚剑听琴阅读 1,241评论 0 0