mi

DICOM(Digital Imaging and Communications in Medicine)即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052)。它定义了质量能满足临床需要的可用于数据交换的医学图像格式,可用于处理、存储、打印和传输医学影像信息。DICOM可以便捷地交换于两个满足DICOM格式协议的工作站之间。目前该协议标准不仅广泛应用于大型医院,而且已成为小型诊所和牙科诊所医生办公室的标准影像阅读格式。

DICOM被广泛应用于放射医疗、心血管成像以及放射诊疗诊断设备(X射线,CT,核磁共振,超声等),并且在眼科和牙科等其它医学领域得到越来越深入广泛的应用。在数以万计的在用医学成像设备中,DICOM是部署最为广泛的医疗信息标准之一。当前大约有百亿级符合DICOM标准的医学图像用于临床使用。

目前,越来越多的DICOM应用程序和分析软件被运用于临床医学,促使越来越多的编程语言开发出支持DICOM API的框架。今天就让我来介绍一下Python语言下支持的DICOM模块,以及如何完成基本DICOM信息分析和处理的编程方法。

[Pydicom]

Pydicom是一个处理DICOM文件的纯Python软件包。它可以通过非常容易的“Pythonic”的方式来提取和修改DICOM数据,修改后的数据还会借此生成新的DICOM文件。作为一个纯Python包,Pydicom可以在Python解释器下任何平台运行,除了必须预先安装Numpy模块外,几乎无需其它任何配置要求。其局限性之一是无法处理压缩像素图像(如JPEG),其次是无法处理分帧动画图像(如造影电影)。

[SimpleITK]

Insight Segmentation and Registration Toolkit (ITK)是一个开源、跨平台的框架,可以提供给开发者增强功能的图像分析和处理套件。其中最为著名的就是SimpleITK,是一个简化版的、构建于ITK最顶层的模块。SimpleITK旨在易化图像处理流程和方法。

[PIL]

Python Image Library (PIL) 是在Python环境下不可缺少的图像处理模块,支持多种格式,并提供强大的图形与图像处理功能,而且API却非常简单易用。

[OpenCV]

OpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

下面就让我以实际Python代码来演示如何编程处理心血管冠脉造影DICOM图像信息。

1. 导入主要框架:SimpleITK、pydicom、PIL、cv2和numpy

import SimpleITK as sitk

from PIL import Image

import dicom

import numpy as np

import cv2

2. 应用SimpleITK框架来读取DICOM文件的矩阵信息。如果DICOM图像是三维螺旋CT图像,则帧参数则代表CT扫描层数;而如果是造影动态电影图像,则帧参数就是15帧/秒的电影图像帧数。

def loadFile(filename):

    ds = sitk.ReadImage(filename)

    img_array = sitk.GetArrayFromImage(ds)

    frame_num, width, height = img_array.shape

    return img_array, frame_num, width, height

3. 应用pydicom来提取患者信息。

def loadFileInformation(filename):

    information = {}

    ds = dicom.read_file(filename)

information['PatientID'] = ds.PatientID

information['PatientName'] = ds.PatientName

information['PatientBirthDate'] = ds.PatientBirthDate

information['PatientSex'] = ds.PatientSex

information['StudyID'] = ds.StudyID

information['StudyDate'] = ds.StudyDate

information['StudyTime'] = ds.StudyTime

information['InstitutionName'] = ds.InstitutionName

information['Manufacturer'] = ds.Manufacturer

information['NumberOfFrames'] = ds.NumberOfFrames

return information

4. 应用PIL来检查图像是否被提取。

def showImage(img_array, frame_num = 0):

    img_bitmap = Image.fromarray(img_array[frame_num])

    return img_bitmap

5. 采用CLAHE (Contrast Limited Adaptive Histogram Equalization)技术来优化图像。

def limitedEqualize(img_array, limit = 4.0):

    img_array_list = []

    for img in img_array:

        clahe = cv2.createCLAHE(clipLimit = limit, tileGridSize = (8,8))

        img_array_list.append(clahe.apply(img))

    img_array_limited_equalized = np.array(img_array_list)

    return img_array_limited_equalized

这一步对于整个图像处理起到很重要的作用,可以根据不同的原始DICOM图像的窗位和窗宽来进行动态调整,以达到最佳的识别效果。

原始图像:

经过自动窗位窗宽调节,生成:

最后应用OpenCV的Python框架cv2把每帧图像组合在一起,生成通用视频格式。

def writeVideo(img_array):

    frame_num, width, height = img_array.shape

    filename_output = filename.split('.')[0] + '.avi'

video = cv2.VideoWriter(filename_output, -1, 16, (width, height))

for img in img_array:

video.write(img)

video.release()

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容