Kafka的基本架构
Producer:生产者,也就是发送消息的一方。生产者负责创建消息,然后将其发送到 Kafka。
Consumer:消费者,也就是接受消息的一方。消费者连接到 Kafka 上并接收消息,进而进行相应的业务逻辑处理。
Consumer Group:一个消费者组可以包含一个或多个消费者。使用多分区 + 多消费者方式可以极大提高数据下游的处理速度,同一消费组中的消费者不会重复消费消息,同样的,不同消费组中的消费者消息消息时互不影响。Kafka 就是通过消费组的方式来实现消息 P2P 模式和广播模式。
Broker:服务代理节点。Broker 是 Kafka 的服务节点,即 Kafka 的服务器。
Topic:Kafka 中的消息以 Topic 为单位进行划分,生产者将消息发送到特定的 Topic,而消费者负责订阅 Topic 的消息并进行消费。
Partition:Topic 是一个逻辑的概念,它可以细分为多个分区,每个分区只属于单个主题。同一个主题下不同分区包含的消息是不同的,分区在存储层面可以看作一个可追加的日志(Log)文件,消息在被追加到分区日志文件的时候都会分配一个特定的偏移量(offset)。
Offset:offset 是消息在分区中的唯一标识,Kafka 通过它来保证消息在分区内的顺序性,不过 offset 并不跨越分区,也就是说,Kafka 保证的是分区有序性而不是主题有序性。
Replication:副本,是 Kafka 保证数据高可用的方式,Kafka 同一 Partition 的数据可以在多 Broker 上存在多个副本,通常只有主副本对外提供读写服务,当主副本所在 broker 崩溃或发生网络一场,Kafka 会在 Controller 的管理下会重新选择新的 Leader 副本对外提供读写服务。
Record:实际写入 Kafka 中并可以被读取的消息记录。每个 record 包含了 key、value 和 timestamp。如上图所示。
Kafka中zookeeper的作用
我们在使用Kafka的时候通常都需要配合使用Zookeeper使用,分区的leader和follower均匀分布在不同的Kafka服务器上面,每台Kafka服务器同时有分区leader和follower。
本文书写时,最新的kafka版本2.8.x版本已经脱离了zookeeper,不过现在用的商用版本都还依赖于zookeeper,这里zookeeper起到了集群管理和元数据管理的作用。
如上图所示,具体来说zookeeper起到以下几点作用:
Broker 注册:Broker 是分布式部署并且之间相互独立,Zookeeper 用来管理注册到集群的所有 Broker 节点。
Topic 注册:在 Kafka 中,同一个 Topic 的消息会被分成多个分区并将其分布在多个 Broker 上,这些分区信息及与 Broker 的对应关系也都是由 Zookeeper 在维护
生产者负载均衡:由于同一个 Topic 消息会被分区并将其分布在多个 Broker 上,因此,生产者需要将消息合理地发送到这些分布式的 Broker 上。
消费者负载均衡:与生产者类似,Kafka 中的消费者同样需要进行负载均衡来实现多个消费者合理地从对应的 Broker 服务器上接收消息,每个消费者分组包含若干消费者,每条消息都只会发送给分组中的一个消费者,不同的消费者分组消费自己特定的 Topic 下面的消息,互不干扰。
Kafka的组成部分
Kafka有四个核心的API:
1.The Producer API
允许一个应用程序发布一串流式的数据到一个或者多个Kafka topic。
Kafka producer 的正常生产逻辑包含以下几个步骤:
1)配置生产者客户端参数常见生产者实例。
2)构建待发送的消息。
3)发送消息。
4)关闭生产者实例。
Producer 发送消息的过程如下图所示,需要经过拦截器,序列化器和分区器,最终由累加器批量发送至 Broker。
Kafka Producer 需要以下必要参数:
bootstrap.server:指定 Kafka 的 Broker 的地址
key.serializer:key 序列化器
value.serializer:value 序列化器
2.The Consumer API
允许一个应用程序订阅一个或多个 topic ,并且对发布给他们的流式数据进行处理。
Kafka 有消费组的概念,每个消费者只能消费所分配到的分区的消息,每一个分区只能被一个消费组中的一个消费者所消费,所以同一个消费组中消费者的数量如果超过了分区的数量,将会出现有些消费者分配不到消费的分区。消费组与消费者关系如下图所示:
Kafka Consumer Client 消费消息通常包含以下步骤:
1)配置客户端,创建消费者
2)订阅主题
3)拉取消息并消费
4)提交消费位移
5)关闭消费者实例
因为 Kafka 的 Consumer 客户端是线程不安全的,为了保证线程安全,并提升消费性能,可以在 Consumer 端采用类似 Reactor 的线程模型来消费数据。
Kafka consumer 参数
bootstrap.servers:连接 broker 地址,host:port 格式。
group.id:消费者隶属的消费组。
key.deserializer:与生产者的key.serializer对应,key 的反序列化方式。
value.deserializer:与生产者的value.serializer对应,value 的反序列化方式。
session.timeout.ms:coordinator 检测失败的时间。默认 10s 该参数是 Consumer Group 主动检测 (组内成员 comsummer) 崩溃的时间间隔,类似于心跳过期时间。
auto.offset.reset:该属性指定了消费者在读取一个没有偏移量后者偏移量无效(消费者长时间失效当前的偏移量已经过时并且被删除了)的分区的情况下,应该作何处理,默认值是 latest,也就是从最新记录读取数据(消费者启动之后生成的记录),另一个值是 earliest,意思是在偏移量无效的情况下,消费者从起始位置开始读取数据。
enable.auto.commit:否自动提交位移,如果为false,则需要在程序中手动提交位移。对于精确到一次的语义,最好手动提交位移
fetch.max.bytes:单次拉取数据的最大字节数量
max.poll.records:单次 poll 调用返回的最大消息数,如果处理逻辑很轻量,可以适当提高该值。但是max.poll.records条数据需要在在 session.timeout.ms 这个时间内处理完 。默认值为 500
request.timeout.ms:一次请求响应的最长等待时间。如果在超时时间内未得到响应,kafka 要么重发这条消息,要么超过重试次数的情况下直接置为失败。
Kafka Rebalance
rebalance 本质上是一种协议,规定了一个 consumer group 下的所有 consumer 如何达成一致来分配订阅 topic 的每个分区。比如某个 group 下有 20 个 consumer,它订阅了一个具有 100 个分区的 topic。正常情况下,Kafka 平均会为每个 consumer 分配 5 个分区。这个分配的过程就叫 rebalance。
什么时候 rebalance?
这也是经常被提及的一个问题。rebalance 的触发条件有三种:
组成员发生变更(新 consumer 加入组、已有 consumer 主动离开组或已有 consumer 崩溃了——这两者的区别后面会谈到)
订阅主题数发生变更
订阅主题的分区数发生变更
如何进行组内分区分配?
Kafka 默认提供了两种分配策略:Range 和 Round-Robin。当然 Kafka 采用了可插拔式的分配策略,你可以创建自己的分配器以实现不同的分配策略。
3.The Streams API
允许一个应用程序作为一个流处理器,消费一个或者多个topic产生的输入流,然后生产一个输出流到一个或多个topic中去,在输入输出流中进行有效的转换。
4.The Connector API
允许构建并运行可重用的生产者或者消费者,将Kafka topics连接到已存在的应用程序或者数据系统。比如,连接到一个关系型数据库,捕捉表(table)的所有变更内容。