NDSB3

Task : 预测patient一年之后lung cancer的概率 base on CT lung scan

方案一:(too naive)

1. Binary classification for a given slice of patient, whether it contains a lung nodule or not

2. Regression the bbox of a lung nodule for the slice predicted with lung nodule in 1.

3.1. For each slice with bbox of lung nodule, predict whether its benign or malignant and combine all slice for patient-level prediction 

or 3.2 : combine all slices for each patient that has lung nodule into a 3D matrix and run 3D CNN on top of that to predict benign vs malignant (see the second paper below)

Possible way to predict : No cancer if a patient does not have lung nodule or only benign nodule, caner otherwise.

Dataset : 

1. http://ptak.felk.cvut.cz/Medical/Motol/LungTIME/ with bbox per slice

paper http://cmp.felk.cvut.cz/ftp/articles/dolejsi/Dolejsi-SPIE2009.pdf

2. dataset https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM+Lung+CT+Challenge#00e86e1ad7f340728e6cec3b2b6edfa8

with only point label per patient, thus needs some processing to get the 3D region containing nodules and also sample hard negatives for training 

paper https://e-reports-ext.llnl.gov/pdf/806183.pdf


方案二 : (better)

1. Detection of the lung nodules for each slice (hard and need labeled training data)

2. training a classifier based on feature of nodules volume and other parameters in dicom file

方案三  : 

 CNN+RNN + heavy data augmentation + end2end

for every patient, select N slices, for example N = 200, if n< N , then pad cyclically. if n > 200, then select 200 consecutive slices 

so each slice out of 200, will be passed through a cnn, at the final fc layer, we have a fc_size = 100 vector and we passed each of these 200 vectors sequentially into a rnn, with 200 layers. Then the output of rnn will be a fc layer with 1 neuron, probability is whether the patient will get an cancer or not a year later.

Due to the limited training data size, in this case is #of patient,   heavy data augmentation is needed at several levels: 

1) generate the sequence of 200 slices 

2) for slices in 1), do rotation, translation, flip, scaling and so on.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,786评论 0 23
  • 这个时代,身边的人催促我们勇往直前、冲向成功,和赢取白富美的人生撞个满怀, 却显有人问你累不累,疼不疼。 X是我们...
    随梦逆流阅读 559评论 2 1
  • 朋友跟我说,想让我推荐几本书看,我就问看书干啥呢,他说想学习,补补功课,让自己进步一点。这不仅跟这几天思考的学习命...
    逄格亮阅读 282评论 0 0
  • 这是我第一次做手帐,有很多的东西都不懂,也没有买有胶带之类的东西,东西准备不充足,只能手画一些图案,用蜡笔上色,之...
    秀君啊阅读 412评论 2 0
  • 如果你不曾真正焦头烂额,也没办法遇见最慵懒的午后,就好像你偶然见到绝处逢生的野花,便学会了欣赏转瞬即逝的烟火。 最...
    TheFreezxxx阅读 322评论 3 0