源码:Lib/heapq.py
这个模块提供了堆队列算法的实现,也称为优先队列算法。
堆是一个二叉树,它的每个父节点的值都只会小于或大于所有孩子节点。它使用了数组来实现:从零开始计数,对于所有的 k ,都有``heap[k] <= heap[2*k+1]`` 和 heap[k] <= heap[2*k+2] 。为了便于比较,不存在的元素被认为是无限大。堆最有趣的特性在于最小的元素总是在根结点:heap[0] 。
这个API与教材中堆算法的实现不太一样,在于两方面:(a)我们使用了基于零开始的索引。这使得节点和其孩子节点之间的索引关系不太直观,但是由于Python使用了从零开始的索引,所以这样做更加合适。(b)我们的 pop 方法返回了最小的元素,而不是最大的(这在教材中叫做 “最小堆”;而“最大堆”在课本中更加常见,因为它更加适用于原地排序)。
基于这两方面,把堆看作原生的Python list也没什么奇怪的: heap[0] 表示最小的元素,同时 heap.sort() 维护了堆的不变性!
要创建一个堆,可以使用list来初始化为 [] ,或者你可以通过一个函数 heapify() ,来把一个list转换成堆。
定义了以下函数:
heapq.heappush(heap, item)
将 item 的值加入 heap 中,保持堆的不变性。
heapq.heappop(heap)
弹出并返回 heap 的最小的元素,保持堆的不变性。如果堆为空,抛出 IndexError 。使用 heap[0] ,可以只访问最小的元素而不弹出它。
heapq.heappushpop(heap, item)
将 item 放入堆中,然后弹出并返回 heap 的最小元素。该组合操作比先调用 heappush() 再调用 heappop() 运行起来更有效率。
heapq.heapify(x)
将list x 转换成堆,原地,线性时间内。
heapq.heapreplace(heap, item)
弹出并返回 heap 中最小的一项,同时推入新的 item。 堆的大小不变。 如果堆为空则引发 IndexError。
这个单步骤操作比 heappop() 加 heappush() 更高效,并且在使用固定大小的堆时更为适宜。 pop/push 组合总是会从堆中返回一个元素并将其替换为 item。
返回的值可能会比添加的 item 更大。 如果不希望如此,可考虑改用 heappushpop()。 它的 push/pop 组合会返回两个值中较小的一个,将较大的值留在堆中。
该模块还提供了三个基于堆的通用功能函数:
heapq.merge(*iterables, key=None, reverse=False)
将多个已排序的输入合并为一个已排序的输出(例如,合并来自多个日志文件的带时间戳的条目)。 返回已排序值的 iterator。
类似于 sorted(itertools.chain(*iterables)) 但返回一个可迭代对象,不会一次性地将数据全部放入内存,并假定每个输入流都是已排序的(从小到大)。
具有两个可选参数,它们都必须指定为关键字参数。
key 指定带有单个参数的 key function,用于从每个输入元素中提取比较键。 默认值为 None (直接比较元素)。
reverse is a boolean value. If set to True, then the input elements are merged as if each comparison were reversed.
在 3.5 版更改: 添加了可选的 key 和 reverse 形参。
heapq.nlargest(n, iterable, key=None)
从 iterable 所定义的数据集中返回前 n 个最大的元素。 如果提供了 key 则其应指定一个单参数的函数,用于从 that is used to extract a comparison key from each element in iterable 的每个元素中提取比较键 (例如 key=str.lower)。 等价于: sorted(iterable, key=key, reverse=True)[:n]。
heapq.nsmallest(n, iterable, key=None)
从 iterable 所定义的数据集中返回前 n 个最小元素组成的列表。 如果提供了 key 则其应指定一个单参数的函数,用于从 iterable 的每个元素中提取比较键 (例如 key=str.lower)。 等价于: sorted(iterable, key=key)[:n]。
后两个函数在 n 值较小时性能最好。 对于更大的值,使用 sorted() 函数会更有效率。 此外,当 n==1 时,使用内置的 min() 和 max() 函数会更有效率。 如果需要重复使用这些函数,请考虑将可迭代对象转为真正的堆。