算法工程师、软件工程师、大数据工程师,傻傻分不清楚

 这里有最简单易懂适合HR的技术干货,咱们国家的科技水平已达到了一个前所未有的水平,区块链微服务容器人工智能大数据云计算,以后可能和程序员聊天都困难!

说声抱歉,告诉你。我们回归啦!

自2018年6月之后,我去到了一家新公司负责区域的管理。因为过于忙碌,实在是无法抽出身来为各位TechHR的小伙伴们撰写相关的内容。

在过去的4个月里,我也备受煎熬。

最终决定离开原来的公司,开始重拾过去的猎头工作。

目前,我的时间也逐渐回归。

感谢这4个月以来,在公众号没有更新任何信息的情况下,各位居然还没有取关。

我弱弱地看了一下,粉丝数量一个没少。

从这周开始,我们会逐渐恢复撰写内容和组织活动。

今天这篇推文是回归的第一篇推文。

岗位怎么招

这是技术干货的固定栏目

暂时只能不定时更新

我们会将TechHR粉丝岗位疑虑

整理成文

———— / BEGIN / ————

前段时间,有几个HR朋友问我:

算法工程师的日常工作到底是在干嘛?

平常看起来似乎还挺闲的,工资还那么高。

有时候算法工程师好像又和大数据工程师是一样的工作?

这到底是怎么回事呢?

大约整理出以下几个疑问:

1、        软件工程师、算法工程师、大数据工程师区别

2、        一个算法工程师的日常

3、        算法工程师有哪些类别、涉及的技术、作用领域

4、        算法工程师的段位怎么分

5、        算法工程师常见的面试问题

这次我们先来看看第一个问题。

软件工程师、算法工程师、大数据工程师有什么区别?

一、软件(开发)工程师

从事软件开发相关工作的人员的统称。

其工作内容会比较宽泛,从编程到算法,软件整体架构到编码的实现,都是需要涉及。

而事实上,我们常规所说的软件工程师,其狭义的定义实际上软件研发工程师、程序员等,他们是主要进行软件架构和编码实现,会使用我们常常听到的JAVA、PHP等开发语言

下附目前市场上常规的软件工程师的类别:

二、大数据工程师

大数据工程师,其实上并不存在这样的岗位。

它实际上是与大数据相关联的一类岗位的总称。

跟大数据有关的职位主要分成2大类:一类是应用类、一类是系统类。

应用类

偏向于数据分析、数据应用,比如我们经常讲到的数据分析、数据挖掘,均属于这个类别。这类职位主要的功能是提取数据、挖掘数据中隐含的业务信息,支撑企业决策。

这个类别中的大数据算法,其实我们基本上可以理解算法工程师。

这是唯一跟算法工程师有交叉的部分

系统类

偏向于系统开发,比如我们经常听到的hadoop、云计算,就是属于这个类型。这里其实主要是hadoop(一个分布式系统,简单理解为另外一种和Windows或者是MacOS一样的东西)偏多,开发语言一般是Java。而另外数据管理员(DBA)和大数据运维工程师,其实,还是原来的DBA,没有变化。

三、算法工程师


他们的职责会更纯粹,他们需要知道如何把现实问题转化为数学的模型,并且把模型调到极致,从而解决问题。

算法工程师工作内容更单一(其实有时候,他们只是在思考问题,而不是真的闲),但是更专,需要更好的数学功底。

不过,目前市面上大部分招聘算法工程师的岗位,特指机器学习、数据挖掘领域的非确定性算法或解决一些非确定性问题(见名词通俗解释)。

因此,有时候所谓的算法工程师,真的和大数据相关的工程师在工作上存在大量的看起来『重叠』。因为,这个工种是想办法从数据中获得规律,通过规律优化目前业务、从而产生价值。

算法工程师大致分成以下2类,其中建模类的算法工程师,实际上的工作会和大数据相关的岗位相似:

四、小结

上述简单从职位的定义上做拆解,其实这3个岗位,其工作职责分别处于不同的阶段和层次。

更多时候,一个完整优秀的产品,可能需要上述几个岗位协同进行配合工作。他们的工作流大约是这样的。

这张图大致描述了不同岗位之前是在什么时候介入工作相互配合的。

其实算法工程师,也可能是数据挖掘工程师。

其实生活中有非常多跟算法有关的现象,只是我们没有发现而已。

对于我们不是做技术类工作的人而言,我们只是不知道其细节,但我们应该要定位到其位置,这样我们在进行人才招聘的时候,才更容易做到心中有底。

名词通俗解释

引入新概念

要解释非确定性问题,需要会引入另外一些概念:确定性问题,多项式时间。

多项式时间

在计算复杂度理论中,指的是一个问题的计算时间m(n)不大于问题大小n的多项式倍数时,解决问题的时间。

举例

我们打开高德导航,从广州东站自驾开车前往祈福新村

一般会出现3条路线,1、广州大道路线;2、新光快速路线;3、华南快速路线。

每一条路线,均会有一个预估时间。

这个时间,大约就是多项式时间的意思。

确定性问题

确定性问题(polynomialproblem简称P问题):所有可以在多项式时间内求解的判定问题称为P问题。

假设我们在导航的路径上必经之路上添加中信广场、体育中心

问题1=广州东站-中信广场

问题2=中信广场-体育中心

问题3=体育中心-祈福新村

问题1、问题2、问题3,则为前面多项式时间的多项式。

驾驶员是否经过中信广场或体育中心?则称为P问题

非确定性问题

非确定性问题(non-deterministic polynomial problem简称NP问题):

可以在多项式时间内验证答案是否正确的问题,为NP问题。

作为驾驶员,当出现3 条导航规划的路径时,我想选择一条时间上最快的路径规划,这时显示华南快速路线比其他2条路线节约10分钟(这是NP问题,是不是真的可以节约10分钟)。

我到达祈福新村,这时我问走新光快速的邻居A,其到达祈福新村的时间。

这时他告诉说,他跟我同时到达祈福新村。

这时,我才验证:华南快速路径规划(答案)不是正确答案。

可能P问题和NP问题,你们会觉得跟我们的生活关联度不大。

在算法工程师眼中,则是完成不一样的。

以导航的例子来说,若出现绝大部分人验证华南快速这条路都和新光快速这条路的通行时间是一样的,那么说明该路路径并不是最节约时间的路径。

高德导航的路径算法工程师,可能需要重新调整其路径规划的算法公式。

这样,才能够更好的为高德用户服务了。

也许他在数据库中抽取的数据还应该添加上

1、车型的不同会导致驾驶速度不同,造成对通行时间的影响

2、不同品牌的汽车,其加速减速对通行时间造成的影响

3、男女驾驶员的驾驶技术不同,对通行时间造成的影响

其实,这个过程就是他们在修改算法公式的参数,所以有时候算法工程师,还有一个外号,叫调参狗。

但即使是这样,其最终的通行预估时间,也不见得一定准确。

算法工程师想要获取相关的数据,也不见是全网数据。毕竟并不是所有人都使用的导航是高德。

算法工程师通过不断的优化算法公式,让这个时间尽可能与真实的通行时间一致,相似度越高,大家对高德地图的信赖度就越高,用户就越多,高德才能够进一步割用户价值的韭菜。

跟HR相关的例子:

2018Q4季度要完成10个人的招聘(问题),12就是这个n,Q4,则时间是m。

1、现在公司只有你一个人负责招聘,你个人的招聘能力是平均每个月完成4个人的招聘。那么完成这10个人员的招聘,则是3个月。m(12)=3个月。

2、如果现在公司除你之外,另外一名同事也负责招聘,他的招聘能力是2个人/月,那么第一个月完成招聘人数为6人,第二个月为6人,整体的m(12)=2个月,提前完成任务。

那么,是不是对招聘人员数量的增加,就会提高整个招聘的进度呢?

答案是不一定。

假如你是这个算法工程师,你觉得最终完成招聘任务的时间,会跟哪些因素有关系?

答案在下期的《谁说HR不能了解算法工程师的日常?》公布。

公布一个新消息

去年答应好友Judy为其小圈子的HR朋友提供一次excel的分享交流,然后到2018年快结束了,这个活动至今未能成行。

鉴于EXCEL对我们的HR日常工作的帮助巨大,我们计划11月开启第一波《HR的EXCEL实战训练营》,而在开启这波训练营之前,我们想找5位HR小伙伴加入我们,成为我们公益教练组成员。

我们对这5位小伙伴有如下要求

1、        有一定的EXCEL基础

2、        从事过薪酬绩效或招聘相关工作

3、        和我们一起有公益心愿意分享自己的技能,帮助同行更好的成长。

4、        有一定的空闲时间,可以帮助点评作业。

5、        广州或深圳区域的小伙伴优先

我在此为你们准备了一点点小小的心意。下图这本书,我会赠送给通过的5名小伙伴。

这本书是一本帮助我们拿到微软办公软件国际认证的好书。

国际认证的证书大约是这样的。

看完这本书后,可以考虑去MOS报名参加OFFICE MASTER考试。

虽然很多人说 OFFICE MASTER的证书没啥用,但至少有几个好处:

1、简历上再也不用写精通OFFICE这种没有意义的描述,直接改成OFFICE MASTER

2、留学申请有加分,美国ACE下属1800所大学可抵免学分

划重点:通过系统实训成为一名起薪保底6K的大数据工程师。通过高效系统的学习路线、紧贴市场需求的技能图谱、紧密及时的答疑辅导,能够帮助学员最快入门、精通掌握技术语言,经过系统的实训顺利毕业并推荐到名企就业,实现人生转型。在这里相信有许多想要学习大数据的同学,大家可以+下大数据学习裙:957205962,即可免费领取套系统的大数据学习教程

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容

  • 我眼中的大数据现状! 其实个人在大数据在大数据这个坑中,细细算来时间也有3+年年了,从一开始做大数据中心平台开发构...
    金乐笑阅读 284评论 0 1
  • 00 缘起 之所以有这个话题,是因为周末加班中午吃饭与一个同行朋友聊起了这个话题,之后再细细地结合一些其他接触的东...
    数据虫巢阅读 17,607评论 37 111
  • 了解数据工程师和数据科学家之间的差异非常重要。 误解或不了解其差异,会导致团队在处理大数据时失败或者表现不及预期。...
    yoku酱阅读 1,002评论 0 1
  • 刚开始加入007的时候,我还是很有激情和兴致,也十分相信自己可以7天写一篇文章,一周看一本书的。然后入群开始,我就...
    学习践行输出阅读 368评论 0 0
  • 1.各属性之间互相影响 a.margin与border 后边会详细说,关于margin合并的问题; b.小圆点与d...
    索伯列夫阅读 210评论 0 0