numpy基础:数组创建

参考
NumPy v1.11手册
数组创建例程

简介

一般有5个机制创建数组:
1. 从其他Python结构(例如,列表,元组)转换
2. numpy原生数组的创建(例如,arange、ones、zeros等)
3. 从磁盘读取数组,无论是标准格式还是自定义格式
4. 通过使用字符串或缓冲区从原始字节创建数组
5. 使用特殊库函数(例如,random)

本节不包括复制、join或以其他方式扩展或改变现有数组的方法。也不会涵盖创建对象数组或结构化数组。这两个都在它们自己的部分讲述。

将Python array_like对象转换为Numpy数组

通常,在Python中排列成array-like结构的数值数据可以通过使用array()函数转换为数组。最明显的例子是列表和元组。有关其使用的详细信息,请参阅array()的文档。一些对象可能支持数组协议,并允许以这种方式转换到数组。找出对象是否可以使用array()转换为一个数组numpy 数组的简单方法很简单,只要交互式试一下,看看它是否工作!(Python方式)。

注意每个元素的长度
>>> x = np.array([2,3,1,0])
>>> x = np.array([2, 3, 1, 0])
>>> x = np.array([[1,2.0],[0,0],(1+1j,3.)]) # note mix of tuple and lists,and types
>>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j], [ 1.+1.j, 3.+0.j]])

Numpy原生数组的创建

Numpy具有从头开始创建数组的内置函数:

zeros(shape)将创建一个用指定形状用0填充的数组。默认dtypefloat64

>>> np.zeros((2, 3)) array([[ 0., 0., 0.], [ 0., 0., 0.]])

ones(shape)将创建一个用1个值填充的数组。它在所有其他方面与zeros相同。

arange()将创建具有定期递增值的数组。检查docstring有关可以使用的各种方法的完整信息。这里将给出几个例子:

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=np.float)
array([ 2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.1)
array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])

注意,关于用户应该知道的最后使用的一些细微之处,在arange docstring中描述。

linspace()将创建具有指定数量的元素的数组,并在指定的开始值和结束值之间等间隔。例如:

>>> np.linspace(1., 4., 6)
array([ 1. ,  1.6,  2.2,  2.8,  3.4,  4. ])

这个创建函数的优点是,可以保证元素的数量和起始点和结束点,arange()通常不会对任意的开始,停止和步长值做任何操作。

indices()将创建一组数组(堆叠为一个更高维度的数组),每个维度一个,每个维表示该维度的变化。一个例子说明比口头描述好得多:

>>> np.indices((3,3))
array([[[0, 0, 0],
        [1, 1, 1],
        [2, 2, 2]],

       [[0, 1, 2],
        [0, 1, 2],
        [0, 1, 2]]])
>>>np.indices((3,3)).shape
(2, 3, 3)

这对于在规则网格上评估多个维度的函数特别有用。

从磁盘读取数组

这可能是大数字组创建的最常见的情况。细节,当然,很大程度上取决于磁盘上的数据格式,因此本节只能给出如何处理各种格式的一般指针。

标准二进制格式

各种字段具有用于数组数据的标准格式。下面列出了已知的python库读取它们和返回numpy数组(可能有其他可以读取和转换为numpy数组,所以检查最后一节)

HDF5: PyTables
FITS: PyFITS

不能直接读取但不难转换的格式的示例是像PIL(能够读取和写入许多图像格式,例如jpg,png等)的库支持的那些格式。

常见ASCII格式

逗号分隔值文件(CSV)被广泛使用(以及Excel等程序的导出和导入选项)。在Python中有许多方法可以读取这些文件。Python中有CSV函数,pylab中有函数(matplotlib的一部分)。

更多的通用ascii文件可以使用io包在scipy中读取。

自定义二进制格式

有多种方法可以使用。如果文件具有相对简单的格式,那么可以编写一个简单的I / O库,并使用numpy fromfile()函数和.tofile()方法直接读取和写入numpy数组(注意你的字节序!如果存在读取数据的良好C或C ++库,那么可以使用各种技术打包该库,尽管这当然是更多的工作,需要显着更高级的知识来与C或C ++交互。

使用特殊库

有一些库可以用于为特殊目的生成数组,并且不可能枚举它们。最常见的用途是随机使用许多数组生成函数,其可以生成随机值的阵列,以及一些用于生成特殊矩阵(例如对角线)的效用函数。

不能直接读取但不难转换的格式的示例是像PIL(能够读取和写入许多图像格式,例如jpg,png等)的库支持的那些格式。

Ones and zeros

函数 描述
empty(shape [,dtype,order]) 返回给定形状和类型的新数组,而不初始化条目。
empty_like(a [,dtype,order,subok]) 返回具有与给定数组相同的形状和类型的新数组。
eye(N [,M,k,dtype]) 返回一个2-D数组,其中一个在对角线上,零在其他地方。
identity(n [,dtype]) 返回身份数组。
ones(shape [,dtype,order]) 返回给定形状和类型的新数组,用数字填充。
ones_like(a [,dtype,order,subok]) 返回与给定数组具有相同形状和类型的数组。
zeros(shape [,dtype,order]) 返回给定形状和类型的新数组,用零填充。
zeros_like(a [,dtype,order,subok]) 返回具有与给定数组相同的形状和类型的零数组。
full(shape,fill_value [,dtype,order]) 返回给定形状和类型的新数组,用fill_value填充。
full_like(a,fill_value [,dtype,order,subok]) 返回与给定数组相同形状和类型的完整数组。

From existing data 从现有数据

函数 描述
array(object[, dtype, copy, order, subok, ndmin]) 创建数组。
asarray(a[, dtype, order]) 将输入转换为数组。
asanyarray(a[, dtype, order]) 将输入转换为ndarray,但传递ndarray子类。
ascontiguousarray(a [,dtype]) 返回内存中的连续数组(C order)。
asmatrix(data [,dtype]) 将输入解释为矩阵。
copy(a [,order]) 返回给定对象的数组副本。
frombuffer(buffer [,dtype,count,offset]) 将缓冲区解释为1维数组。
fromfile(file [,dtype,count,sep]) 从文本或二进制文件中的数据构造数组。
fromfunction(function,shape,\ * \ * kwargs) 通过在每个坐标上执行函数来构造数组。
fromiter(iterable,dtype [,count]) 从可迭代对象创建新的1维数组。
fromstring(string [,dtype,count,sep]) 根据字符串中的原始二进制或文本数据初始化的新1-D数组。
loadtxt(fname [,dtype,comments,delimiter,...]) 从文本文件加载数据。

Creating record arrays (numpy.rec) 创建记录数组

注意

numpy.recnumpy.core.records的首选别名。

函数 描述
core.records.array(obj [,dtype,shape,...]) 从各种各样的对象构造一个记录数组。
core.records.fromarrays(arrayList [,dtype,...]) 从数组的(平面)列表创建一个记录数组
core.records.fromrecords(recList [,dtype,...]) 从文本形式的记录列表创建一个recarray
core.records.fromstring(datastring [,dtype,...]) 从包含在中的二进制数据创建(只读)记录数组
core.records.fromfile(fd [,dtype,shape,...]) 从二进制文件数据创建数组

Creating character arrays (numpy.char) 创建字符数组

注意

numpy.charnumpy.core.defchararray的首选别名。

函数 描述
core.defchararray.array(obj [,itemsize,...]) 创建chararray
core.defchararray.asarray(obj [,itemsize,...]) 将输入转换为chararray,只有在必要时才复制数据。

Numerical ranges 数值范围

函数 描述
arange([start,] stop [,step,] [,dtype]) 在给定间隔内返回均匀间隔的值。
linspace(start,stop [,num,endpoint,...]) 在指定的间隔内返回均匀间隔的数字。
logspace(start,stop [,num,endpoint,base,...]) 返回以对数刻度均匀分布的数字。
geomspace
meshgrid(\ * xi,\ * \ * kwargs) 从坐标向量返回坐标矩阵。
mgrid nd_grid实例,返回密集的多维“网格网格”。
ogrid nd_grid实例,返回一个打开的多维“meshgrid”。

Building matrices 建立矩阵

函数 描述
diag(v [,k]) 提取对角线或构造对角数组。
diagflat(v [,k]) 创建一个二维数组,将扁平输入作为对角线。
tri(N [,M,k,dtype]) 数组,其中一个在给定的对角线和在其他地方零。
tril(m [,k]) 数组的下三角形。
triu(m [,k]) 数组的上三角形。
vander(x [,N,increasing]) 生成Vandermonde矩阵。

The Matrix class

函数 描述
mat(data [,dtype]) 将输入解释为矩阵。
bmat(obj [,ldict,gdict]) 从字符串,嵌套序列或数组构建一个矩阵对象。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容