查找和排序

查找:

  • 顺序查找
  • 二分查找(折半查找)
  • 二叉排序树查找
  • 哈希查找,时间复杂度O(1)
  • Fibonacci查找,时间复杂度O(logN)
  • 分块查找,时间复杂度O(logN+N/m)

排序:

  • 冒泡排序
  • 快速排序
  • 归并排序
  • 插入排序
  • 选择排序

查找:


顺序查找,时间复杂度O(N)

nums = [4,7,12,20,36,48,50,77,90]
n = 36
for i in nums:
    if(i == n):
        print(i)
        break
#输出36

折半查找(其实就是二分查找)时间复杂度O(logN)

#二分查找,给定一个数字n,给定一个有序列表,找到数字n的下标,否则返回-1
def searchNum(n,list):
    low=0
    high=(len(list))

    while low<=high:
        mid = (low + high)//2
        if n>list[mid]:
            low=mid+1
        elif n<list[mid]:
            high=mid-1
        else:
            return mid
    return -1

list=[1,4,6,9,12,45,78,900,1212];
mid=searchNum(45,list)
print(mid)

二叉排序树的查找

# 二叉树查找 Python实现
class BSTNode:
    """
    定义一个二叉树节点类。
    以讨论算法为主,忽略了一些诸如对数据类型进行判断的问题。
    """
    def __init__(self, data, left=None, right=None):
        """
        初始化
        :param data: 节点储存的数据
        :param left: 节点左子树
        :param right: 节点右子树
        """
        self.data = data
        self.left = left
        self.right = right


class BinarySortTree:
    """
    基于BSTNode类的二叉查找树。维护一个根节点的指针。
    """
    def __init__(self):
        self._root = None

    def is_empty(self):
        return self._root is None

    def search(self, key):
        """
        关键码检索
        :param key: 关键码
        :return: 查询节点或None
        """
        bt = self._root
        while bt:
            entry = bt.data
            if key < entry:
                bt = bt.left
            elif key > entry:
                bt = bt.right
            else:
                return entry
        return None

    def insert(self, key):
        """
        插入操作
        :param key:关键码
        :return: 布尔值
        """
        bt = self._root
        if not bt:
            self._root = BSTNode(key)
            return
        while True:
            entry = bt.data
            if key < entry:
                if bt.left is None:
                    bt.left = BSTNode(key)
                    return
                bt = bt.left
            elif key > entry:
                if bt.right is None:
                    bt.right = BSTNode(key)
                    return
                bt = bt.right
            else:
                bt.data = key
                return

    def delete(self, key):
        """
        二叉查找树最复杂的方法
        :param key: 关键码
        :return: 布尔值
        """
        p, q = None, self._root     # 维持p为q的父节点,用于后面的链接操作
        if not q:
            print("空树!")
            return
        while q and q.data != key:
            p = q
            if key < q.data:
                q = q.left
            else:
                q = q.right
            if not q:               # 当树中没有关键码key时,结束退出。
                return
        # 上面已将找到了要删除的节点,用q引用。而p则是q的父节点或者None(q为根节点时)。
        if not q.left:
            if p is None:
                self._root = q.right
            elif q is p.left:
                p.left = q.right
            else:
                p.right = q.right
            return
        # 查找节点q的左子树的最右节点,将q的右子树链接为该节点的右子树
        # 该方法可能会增大树的深度,效率并不算高。可以设计其它的方法。
        r = q.left
        while r.right:
            r = r.right
        r.right = q.right
        if p is None:
            self._root = q.left
        elif p.left is q:
            p.left = q.left
        else:
            p.right = q.left

    def __iter__(self):
        """
        实现二叉树的中序遍历算法,
        展示我们创建的二叉查找树.
        直接使用python内置的列表作为一个栈。
        :return: data
        """
        stack = []
        node = self._root
        while node or stack:
            while node:
                stack.append(node)
                node = node.left
            node = stack.pop()
            yield node.data
            node = node.right


if __name__ == '__main__':
    lis = [62, 58, 88, 48, 73, 99, 35, 51, 93, 29, 37, 49, 56, 36, 50]
    bs_tree = BinarySortTree()
    for i in range(len(lis)):
        bs_tree.insert(lis[i])
    # bs_tree.insert(100)
    bs_tree.delete(58)
    for i in bs_tree:
        print(i, end=" ")
    # print("\n", bs_tree.search(4))

哈希查找,时间复杂度O(1)
分块查找,时间复杂度O(logN+N/m)
将列表分块,找出最大值
先找最大值再顺序查找

Fibonacci查找,时间复杂度O(logN)

MAXSIZE = 20
#构建一个febonacci列表
def fibonacci():  # 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
    f = [0] * MAXSIZE
    f[0] = 1
    f[1] = 1
    for i in range(2, MAXSIZE):
        f[i] = f[i-1] + f[i-2]
    return f
#搜索
def fibonacciSearch(array, value):
    low, mid, high = 0, 0, len(array)-1
    k = 0
    f = fibonacci()
#找到比给定数组大小的最小菲波那切数
    while len(array) > f[k]-1:
        k += 1
#将数组的长度补到fk-1的大大小,数值为原列表最后的数值
    temp = array + [array[-1] * (f[k]-1-len(array))]
    while low <= high:
        mid = low + f[k-1] - 1
        if temp[mid] > value:
            high = mid - 1
            k = k - 1
        elif temp[mid] < value:
            low = mid + 1
            k = k - 2
        else:
            if mid <= high: # 如果在high位前,则返回mid位置,否则返回high位置
                return mid
            else:
                return high
    return -1

if __name__ == '__main__':
    a = [1, 3, 5, 6, 7, 88]
    print(fibonacciSearch(a, 2))

差值查找,时间复杂度O(log(logN))
通过类比,我们可以将二分查找的点改进为如下:

mid=low+(high-low)*(key-a[low])/(a[high]-a[low])//(1/2)
换为(key-a[low])/(a[high]-a[low])

也就是将上述的比例参数1/2改进为自适应的,根据关键字在整个有序表中所处的位置,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。

排序
插入排序

#插入排序
# python
def insert_sort(data,dataSorted):
    if len(data)<1:
        return dataSorted
    temp=data.pop(0)
    if len(dataSorted)<1:
        dataSorted.append(temp)
        return insert_sort(data,dataSorted)
    i=0
    while  temp<dataSorted[i]:
        if i == len(dataSorted) - 1:
            break
        i+=1
    dataSorted.insert(i,temp)
    print(dataSorted)
    return insert_sort(data,dataSorted)
array=[1,3,7,4,3,2,6,8,4,2]
print(insert_sort(array,[]))

冒泡排序

def bubbleSort(arr):
    n = len(arr)
 
    # 遍历所有数组元素
    for i in range(n):
 
        # Last i elements are already in place
        for j in range(0, n-i-1):
 
            if arr[j] > arr[j+1] :
                arr[j], arr[j+1] = arr[j+1], arr[j]
 
arr = [64, 34, 25, 12, 22, 11, 90]
 
bubbleSort(arr)
 
print ("排序后的数组:")
for i in range(len(arr)):
    print ("%d" %arr[i]),

快速排序

#快速排序
def sortQuckily(array):
    if len(array)<2:
        return array
    else:
        axis=array[0]
        less=[i for i in array[1:] if i<axis]
        greater=[i for i in array[1:] if i>axis]
    return sortQuckily(less)+[axis]+sortQuckily(greater)
kinoList=[1,4,6,3,98,4,33,67,1,4,0,6,3,78]
print(sortQuckily(kinoList))

我个人觉得这是快排最漂亮的代码了

归并排序

#先实现拆分
def cut(array):
    if len(array)<=1:
        print(array)
        return array
    mid=len(array)//2
    print(mid)

    left=cut(array[0:mid])
    right=cut(array[mid:len(array)])
    return  megret(left,right)
def megret(left,right):
    result=[]
    i,j=0,0
    while len(left)>i and len(right)>j:
        if left[i]>right[j]:
            result.append(right[j])
            j+=1
        else:
            result.append(left[i])
            i+=1
    result.extend(left[i:])
    result.extend(right[j:])
    return  result
array=[3,64,2]
print(cut(array))

选择排序

#选择排序
def chooseSort(listKino):
    smallest=listKino[0]
    index=0

    for i in range(1,len(listKino)):
        if(listKino[i]<smallest):
            smallest=listKino[i]
            index=i
    temp=listKino[index]
    del listKino[index]
    return temp

listKino=[1,3,9456,445,5,7,2,23232,34343,45,67,45454,4,12,89,112,778,3,2323,7845,9001,12121,90901]
listNew=[]
for i in range(len(listKino)):
    listNew.append(chooseSort(listKino))
print(listNew)

屏幕快照 2019-09-18 下午1.40.09.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容