【转载】单应矩阵的来源

Homography 理解本文转自:http://m.blog.csdn.net/blog/xuluhui123/17115073
在计算机视觉中,平面的单应性被定义为一个平面到另外一个平面的投影映射。因此一个二维平面上的点映射到摄像机成像仪上的映射就是平面单应性的例子。如果点Q到成像仪上的点q的映射使用齐次坐标,这种映射可以用矩阵相乘的方式表示。若有一下定义:


则可以将单应性简单的表示为:

这里引入参数s,它是任意尺度的比例(目的是使得单应性定义到该尺度比例)。通常根据习惯放在H的外面。

H有两部分组成:用于定位观察的物体平面的物理变换和使用摄像机内参数矩阵的投影。


物理变换部分是与观测到的图像平面相关的部分旋转R和部分平移t的影响之和,表示如下

这里R为33大小的矩阵,t表示一个一个3维的列矢量。
摄像机内参数矩阵用M表示,那么我们重写单应性如下:

我们知道单应性研究的是一个平面上到另外一个平面的映射,那么上述公式中的Q,就可以简化为平面坐标中的Q',即我们使Z=0。即物体平面上的点我们用x,y表示,相机平面上的点,我们也是用二维点表示。我们去掉了Z方向的坐标,那么相对于旋转矩阵R,R可以分解为R=[r1 r2 r3],那么r3也就不要了,参考下面的推导:

其中H为:

是一个3×3大小的矩阵.
故最终的单应性矩阵可表示如下:

OpenCV就是利用上述公式来计算单应性矩阵。它使用同一物体的多个图像来计算每个视场的旋转和平移,同时也计算摄像机的内参数。我们知道旋转和平移共6个参数,摄像机内参数为4个参数。对于每一个视场有6个要求解的新参数和4个不变的相机内参数。对于平面物体如棋盘,能够提供8个方差,即映射一个正方形到四边形可以用4个(x,y)来描述。那么对于两个视场,我们就有8
2=16=2*6+4,即求解所有的参数,至少需要两个视场。
为什么正方形到四边形的四个点的映射可以确定8个方程呢,结果是显然的,我们假设物体平面上的正方形的一个顶点坐标为(u,v),成像仪与该点对应的点坐标为(x,y),我们假设它们之间的关系如下:
u=f(x,y);
v=g(x,y);
显然,我们把四点的对应坐标带入到上述公式可以得到8个方程。
这里我们会想物体平面上正方形的四个顶点坐标如何确定,其实我们就可以理解为角点的个数,对于尺度的话,我们有s进行控制。对于图像平面上的角点的位置,我们可以可以通过寻找角点来定位他们的位置。其实对于具体的操作,由于还没细读代码和相关原理,在这里只能大体猜测一下。等日后学习了,再来纠正。

单应性矩阵H把源图像平面上的点集位置与目标图像平面上(通常是成像仪平面)的点集位置联系起来:



OpenCV就是利用多个视场计算多个单应性矩阵的方法来求解摄像机内参数。

OpenCV提供了一个方便的C函数cvFindHomography(),函数接口如下:

void cvFindHomography(  
const CvMat* src_points,  
const CvMat* dst_points,  
CvMat* homography  
);  

1、src_points,dst_points为N×2或者N×3的矩阵,N×2表示点是以像素坐标表示。N×3表示以齐次坐标表示。
2、homography,为3*3大小的矩阵,用来存储输出的结果。

C++函数的接口:

Mat findHomography( const Mat& srcPoints, const Mat& dstPoints,  
Mat& status, int method=0,  
double ransacReprojThreshold=3 );  
Mat findHomography( const Mat& srcPoints, const Mat& dstPoints,  
vector<uchar>& status, int method=0,  
double ransacReprojThreshold=3 );  
Mat findHomography( const Mat& srcPoints, const Mat& dstPoints,  
int method=0, double ransacReprojThreshold=3 );  

1、srcPoints,dstPoints为CV_32FC2或者vector<Point2f>类型
2、method:0表示使用所有点的常规方法;CV_RANSAC 基于RANSAC鲁棒性的方法;CV_LMEDS 最小中值鲁棒性方法
3、ransacReprojThreshod 仅在RANSAC方法中使用,一个点对被认为是内层围值(非异常值)所允许的最大投影误差。即如果:



那么点i被认为是异常值。如果srcPoints和dstPoints单位是像素,通常意味着在某些情况下这个参数的范围在1到10之间。
4、status,可选的输出掩码,用在CV_RANSAC或者CV_LMEDS方法中。注意输入掩码将被忽略。

这个函数找到并且返回源图像平面和目的图像平面之间的透视变换矩阵H:


使得下面的返回投影误差(back-projection)最小:

如果参数method设置为默认值0,该函数使用一个简单的最小二乘方案来计算初始的单应性估计。
然而,如果不是所有的点对(srcPoints,dstPoints)都适应这个严格的透视变换。(也就是说,有一些异常值),这个初始估计值将很差。在这种情况下,我们可以使用两个鲁棒性算法中的一个。RANSCA和LMEDS这两个方法都尝试不同的随机的相对应点对的子集,每四对点集一组,使用这个子集和一个简单的最小二乘算法来估计单应性矩阵,然后计算得到单应性矩阵的质量quality/goodness。(对于RANSAC方法是内层围点的数量,对于LMeDs是中间的重投影误差)。然后最好的子集用来产生单应性矩阵的初始化估计和inliers/outliers的掩码。

忽略方法,鲁棒性与否,计算得到的单应性矩阵使用Levenberg-Marquardt方法来进一步减少重投影误差,从而进一步提纯。(对于鲁棒性的方法仅使用内围层点(inliers))。

RANSAC方法,几乎可以处理任含有何异常值比率的情况,但是它需要一个阈值用来区分inliers和outliers。LMeDS方法不需要任何阈值,但是它仅在inliers大于50%的情况下才能正确的工作。最后,如果你确信在你计算得到的特征点仅含一些小的噪声,但是没有异常值,默认的方法可能是最好的选择。(因此,在计算相机参数时,我们或许仅使用默认的方法)
这个函数用来找到初始化内参数和外参数矩阵。单应性矩阵取决于一个尺度,那么通常归一化,以使得h33=1。

再贴一个知乎回答:

H矩阵知乎.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容

  • 这是很早以前已经看过的,最近无意中又把保存的文章翻出来时,想起很多朋友问过矩阵,虽对矩阵似懂非懂,但却很想弄懂它,...
    dechuan阅读 6,074评论 4 57
  • 之前在《浅谈移动平台创新玩法》简单的猜测了easyar中使用的图像识别算法,基于图片指纹的哈希算法的图片检索 。后...
    zyl04401阅读 13,056评论 6 16
  • 一前言 特征值 奇异值 二奇异值计算 三PCA 1)数据的向量表示及降维问题 2)向量的表示及基变换 3)基向量 ...
    Arya鑫阅读 10,485评论 2 43
  • 理解矩阵一:转载自:http://blog.csdn.net/myan/article/details/64751...
    jiandanjinxin阅读 1,522评论 1 15
  • 到底是什么让一个人的想法发生改变的,有人说是周围环境变了,有人说人心会变。我也不知道我是因为环境变了还是心变了。去...
    心门上了锁的窗阅读 185评论 0 0