使用亚马逊的DEEPAR做股票的预测

DeepAR 是 Amazon 于 2017 年提出的基于深度学习的时间序列预测方法,目前已集成到 Amazon SageMaker 和 GluonTS 中。前者是 AWS 的机器学习云平台,后者是 Amazon 开源的时序预测工具库。

传统的时间序列预测方法(ARIMA、Holt-Winters’ 等)往往针对一维时间序列本身建模,难以利用额外特征。此外,传统方法的预测目标通常是序列在每个时间步上的取值。与之相比,基于神经网络的 DeepAR 方法可以很方便地将额外的特征纳入考虑,且其预测目标是序列在每个时间步上取值的概率分布。在特定场景下,概率预测比单点预测更有意义。以零售业为例,若已知商品未来销量的概率分布,则可以利用运筹优化方法推算在不同业务目标下的最优采购量,从而辅助决策。

获取股票信息

liststock =['sz.300807','sz.300789','sz.300771','sz.300546','sz.300479','sz.300462','sz.300455','sz.300449','sz.300386','sz.300368']
#liststock = ['sz.300462']
listdic = []
lg = bs.login()
for ite in liststock:
    dd = mygetstockdata(ite)
    dic = {"start":dd.date[0],"target":list(dd.close),"cat":int(liststock[0].split('.')[1]),"dynamic_feat":[list(dd.volume),list(dd.turn)]}
    #strjon = json.dumps(dic)
    listdic.append(dic)

bs.logout()

traindata = ListDataset(
    listdic,
    freq = "1d"
)

设置estimator,训练保存到tmp文件夹

prediction_length = 30
estimator = DeepAREstimator(
    prediction_length=prediction_length,
    context_length=30,
    freq="1d",
    trainer=Trainer(ctx="cpu",
                    epochs=5,#30
                    learning_rate=1e-3,
                    num_batches_per_epoch=50 #100
                   )
)
predictor = estimator.train(traindata)

predictor.serialize(Path("./tmp/"))

可以直接使用也可以保存下来后续直接用

predictor = Predictor.deserialize(Path("./tmp/"))
import matplotlib.pyplot as plt
from gluonts.dataset.util import to_pandas
for test_entry, forecast in zip(testdata, predictor.predict(testdata)):
    to_pandas(test_entry)[-60:].plot(linewidth=2)
    forecast.plot(color='g', prediction_intervals=[50.0, 90.0])
plt.grid(which='both')

最后得到得图像,随机选择了10个计算机行业得股票做的训练从19年1月到现在得数据,最后预测得是其中得一支股票


图片.png

从图片可以看出来日期越靠后偏差越大,用这10只股票来看基本都是先大涨一波然后大跌。太靠后得不太靠谱,这10支股票得数据我试着跑了两天,日期近得没什么变化,但是对长期得预测变化较大,如果用来参考最好还是比较频繁得预测。
这是用10支股票训练得结果,后续打算多选几个股票来训练。

最近正在兼职帮朋友做销售数字的分析,才学的deepar,目前来看涉及到多种类得预测还是要比其它得好一些。有感兴趣得可以交流一下。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352