迁移学习2

  • 导入所需的包
from __future__ import absolute_import, division, print_function, unicode_literals

import os

import tensorflow as tf
from tensorflow import keras
print("TensorFlow version is ", tf.__version__)

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
  • 下载数据
zip_file = tf.keras.utils.get_file(origin="https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip",
                                   fname="cats_and_dogs_filtered.zip", extract=True)
base_dir, _ = os.path.splitext(zip_file)
  • 构建batch数据生成器
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')

# Directory with our training cat pictures
train_cats_dir = os.path.join(train_dir, 'cats')
print ('Total training cat images:', len(os.listdir(train_cats_dir)))

# Directory with our training dog pictures
train_dogs_dir = os.path.join(train_dir, 'dogs')
print ('Total training dog images:', len(os.listdir(train_dogs_dir)))

# Directory with our validation cat pictures
validation_cats_dir = os.path.join(validation_dir, 'cats')
print ('Total validation cat images:', len(os.listdir(validation_cats_dir)))

# Directory with our validation dog pictures
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
print ('Total validation dog images:', len(os.listdir(validation_dogs_dir)))

image_size = 160 # All images will be resized to 160x160
batch_size = 32

# Rescale all images by 1./255 and apply image augmentation
train_datagen = keras.preprocessing.image.ImageDataGenerator(
                rescale=1./255)

validation_datagen = keras.preprocessing.image.ImageDataGenerator(rescale=1./255)

# Flow training images in batches of 20 using train_datagen generator
train_generator = train_datagen.flow_from_directory(
                train_dir,  # Source directory for the training images
                target_size=(image_size, image_size),
                batch_size=batch_size,
                # Since we use binary_crossentropy loss, we need binary labels
                class_mode='binary')

# Flow validation images in batches of 20 using test_datagen generator
validation_generator = validation_datagen.flow_from_directory(
                validation_dir, # Source directory for the validation images
                target_size=(image_size, image_size),
                batch_size=batch_size,
                class_mode='binary')
  • 构建预训练的base模型
IMG_SHAPE = (image_size, image_size, 3)

# Create the base model from the pre-trained model MobileNet V2
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
                                               include_top=False,
                                               weights='imagenet')
  • 冻结base模型的参数
base_model.trainable = False
  • 查看模型结构
# Let's take a look at the base model architecture
base_model.summary()
  • 在base模型上增加模型分类器
model = tf.keras.Sequential([
  base_model,
  keras.layers.GlobalAveragePooling2D(),
  keras.layers.Dense(1, activation='sigmoid')
])
  • 编译模型
model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=0.0001),
              loss='binary_crossentropy',
              metrics=['accuracy'])
  • 查看模型结构和参数(可训练参数的数量)
base_model.summary()
  • 训练模型
epochs = 10
steps_per_epoch = train_generator.n // batch_size
validation_steps = validation_generator.n // batch_size

history = model.fit_generator(train_generator,
                              steps_per_epoch = steps_per_epoch,
                              epochs=epochs,
                              workers=4,
                              validation_data=validation_generator,
                              validation_steps=validation_steps)
  • 学习曲线
acc = history.history['acc']
val_acc = history.history['val_acc']

loss = history.history['loss']
val_loss = history.history['val_loss']

plt.figure(figsize=(8, 8))
plt.subplot(2, 1, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.ylabel('Accuracy')
plt.ylim([min(plt.ylim()),1])
plt.title('Training and Validation Accuracy')

plt.subplot(2, 1, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.ylabel('Cross Entropy')
plt.ylim([0,max(plt.ylim())])
plt.title('Training and Validation Loss')
plt.show()
  • Fine tuning: 将base模型较高层次layer部分解冻进行训练
base_model.trainable = True

# Let's take a look to see how many layers are in the base model
print("Number of layers in the base model: ", len(base_model.layers))

# Fine tune from this layer onwards
fine_tune_at = 100

# Freeze all the layers before the `fine_tune_at` layer
for layer in base_model.layers[:fine_tune_at]:
  layer.trainable =  False
  • 重新编译
model.compile(optimizer = tf.keras.optimizers.RMSprop(lr=2e-5),
              loss='binary_crossentropy',
              metrics=['accuracy'])
  • 再次查看模型
model.summary()
len(model.trainable_variables)
  • 继续训练模型
history_fine = model.fit_generator(train_generator,
                                   steps_per_epoch = steps_per_epoch,
                                   epochs=epochs,
                                   workers=4,
                                   validation_data=validation_generator,
                                   validation_steps=validation_steps)
  • 将两次训练的学习曲线连起来作图
acc += history_fine.history['acc']
val_acc += history_fine.history['val_acc']

loss += history_fine.history['loss']
val_loss += history_fine.history['val_loss']

plt.figure(figsize=(8, 8))
plt.subplot(2, 1, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.ylim([0.9, 1])
plt.plot([epochs-1,epochs-1], plt.ylim(), label='Start Fine Tuning')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(2, 1, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.ylim([0, 0.2])
plt.plot([epochs-1,epochs-1], plt.ylim(), label='Start Fine Tuning')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

【参考资料】
Transfer Learning Using Pretrained ConvNets

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容