Find lanes

import numpy as np
histogram = np.sum(img[img.shape[0]//2:,:], axis=0)
plt.plot(histogram)




Implement Sliding Windows and Fit a Polynomial

Suppose you've got a warped binary image called binary_warped and you want to find which "hot" pixels are associated with the lane lines. Here's a basic implementation of the method shown in the animation above. You should think about how you could improve this implementation to make sure you can find the lines as robustly as possible!

import numpy as np
import cv2
import matplotlib.pyplot as plt

# Assuming you have created a warped binary image called "binary_warped"
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0]/2:,:], axis=0)
# Create an output image to draw on and  visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint

# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []

# Step through the windows one by one
for window in range(nwindows):
    # Identify window boundaries in x and y (and right and left)
    win_y_low = binary_warped.shape[0] - (window+1)*window_height
    win_y_high = binary_warped.shape[0] - window*window_height
    win_xleft_low = leftx_current - margin
    win_xleft_high = leftx_current + margin
    win_xright_low = rightx_current - margin
    win_xright_high = rightx_current + margin
    # Draw the windows on the visualization image
    cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 2) 
    cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 2) 
    # Identify the nonzero pixels in x and y within the window
    good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
    good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
    # Append these indices to the lists
    left_lane_inds.append(good_left_inds)
    right_lane_inds.append(good_right_inds)
    # If you found > minpix pixels, recenter next window on their mean position
    if len(good_left_inds) > minpix:
        leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
    if len(good_right_inds) > minpix:        
        rightx_current = np.int(np.mean(nonzerox[good_right_inds]))

# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)

# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds] 
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds] 

# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)

Visualization

At this point, you're done! But here is how you can visualize the result as well:
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]ploty2 + left_fit[1]ploty + left_fit[2]
right_fitx = right_fit[0]ploty2 + right_fit[1]ploty + right_fit[2]

out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
plt.imshow(out_img)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)

Skip the sliding windows step once you know where the lines are

Now you know where the lines are you have a fit! In the next frame of video you don't need to do a blind search again, but instead you can just search in a margin around the previous line position like this:
# Assume you now have a new warped binary image
# from the next frame of video (also called "binary_warped")
# It's now much easier to find line pixels!
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 100
left_lane_inds = ((nonzerox > (left_fit[0](nonzeroy2) + left_fit[1]nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0](nonzeroy2) + left_fit[1]nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0](nonzeroy2) + right_fit[1]nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0](nonzeroy2) + right_fit[1]nonzeroy + right_fit[2] + margin)))

# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds] 
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]

And you're done! But let's visualize the result here as well

# Create an image to draw on and an image to show the selection window
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
window_img = np.zeros_like(out_img)
# Color in left and right line pixels
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]

# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))

# Draw the lane onto the warped blank image
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))
result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)
plt.imshow(result)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)

The green shaded area shows where we searched for the lines this time. So, once you know where the lines are in one frame of video, you can do a highly targeted search for them in the next frame. This is equivalent to using a customized region of interest for each frame of video, and should help you track the lanes through sharp curves and tricky conditions. If you lose track of the lines, go back to your sliding windows search or other method to rediscover them.

https://classroom.udacity.com/courses/nd013beta-computer-vision/lessons/40ec78ee-fb7c-4b53-94a8-028c5c60b858/concepts/c41a4b6b-9e57-44e6-9df9-7e4e74a1a49a

Sliding Window Search

Another way to approach the sliding window method is to apply a convolution, which will maximize the number of "hot" pixels in each window. A convolution is the summation of the product of two separate signals, in our case the window template and the vertical slice of the pixel image.

You slide your window template across the image from left to right and any overlapping values are summed together, creating the convolved signal. The peak of the convolved signal is where there was the highest overlap of pixels and the most likely position for the lane marker.

Now let's try using convolutions to find the best window center positions in a thresholded road image. The code below allows you to experiment with using convolutions for a sliding window search function. Go ahead and give it a try.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import glob
import cv2

# Read in a thresholded image
warped = mpimg.imread('warped_example.jpg')
# window settings
window_width = 50 
window_height = 80 # Break image into 9 vertical layers since image height is 720
margin = 100 # How much to slide left and right for searching

def window_mask(width, height, img_ref, center,level):
    output = np.zeros_like(img_ref)
    output[int(img_ref.shape[0]-(level+1)*height):int(img_ref.shape[0]-level*height),max(0,int(center-width/2)):min(int(center+width/2),img_ref.shape[1])] = 1
    return output

def find_window_centroids(image, window_width, window_height, margin):
    
    window_centroids = [] # Store the (left,right) window centroid positions per level
    window = np.ones(window_width) # Create our window template that we will use for convolutions
    
    # First find the two starting positions for the left and right lane by using np.sum to get the vertical image slice
    # and then np.convolve the vertical image slice with the window template 
    
    # Sum quarter bottom of image to get slice, could use a different ratio
    l_sum = np.sum(warped[int(3*warped.shape[0]/4):,:int(warped.shape[1]/2)], axis=0)
    l_center = np.argmax(np.convolve(window,l_sum))-window_width/2
    r_sum = np.sum(warped[int(3*warped.shape[0]/4):,int(warped.shape[1]/2):], axis=0)
    r_center = np.argmax(np.convolve(window,r_sum))-window_width/2+int(warped.shape[1]/2)
    
    # Add what we found for the first layer
    window_centroids.append((l_center,r_center))
    
    # Go through each layer looking for max pixel locations
    for level in range(1,(int)(warped.shape[0]/window_height)):
        # convolve the window into the vertical slice of the image
        image_layer = np.sum(warped[int(warped.shape[0]-(level+1)*window_height):int(warped.shape[0]-level*window_height),:], axis=0)
        conv_signal = np.convolve(window, image_layer)
        # Find the best left centroid by using past left center as a reference
        # Use window_width/2 as offset because convolution signal reference is at right side of window, not center of window
        offset = window_width/2
        l_min_index = int(max(l_center+offset-margin,0))
        l_max_index = int(min(l_center+offset+margin,warped.shape[1]))
        l_center = np.argmax(conv_signal[l_min_index:l_max_index])+l_min_index-offset
        # Find the best right centroid by using past right center as a reference
        r_min_index = int(max(r_center+offset-margin,0))
        r_max_index = int(min(r_center+offset+margin,warped.shape[1]))
        r_center = np.argmax(conv_signal[r_min_index:r_max_index])+r_min_index-offset
        # Add what we found for that layer
        window_centroids.append((l_center,r_center))

    return window_centroids

window_centroids = find_window_centroids(warped, window_width, window_height, margin)

# If we found any window centers
if len(window_centroids) > 0:

    # Points used to draw all the left and right windows
    l_points = np.zeros_like(warped)
    r_points = np.zeros_like(warped)

    # Go through each level and draw the windows    
    for level in range(0,len(window_centroids)):
        # Window_mask is a function to draw window areas
        l_mask = window_mask(window_width,window_height,warped,window_centroids[level][0],level)
        r_mask = window_mask(window_width,window_height,warped,window_centroids[level][1],level)
        # Add graphic points from window mask here to total pixels found 
        l_points[(l_points == 255) | ((l_mask == 1) ) ] = 255
        r_points[(r_points == 255) | ((r_mask == 1) ) ] = 255

    # Draw the results
    template = np.array(r_points+l_points,np.uint8) # add both left and right window pixels together
    zero_channel = np.zeros_like(template) # create a zero color channel
    template = np.array(cv2.merge((zero_channel,template,zero_channel)),np.uint8) # make window pixels green
    warpage = np.array(cv2.merge((warped,warped,warped)),np.uint8) # making the original road pixels 3 color channels
    output = cv2.addWeighted(warpage, 1, template, 0.5, 0.0) # overlay the orignal road image with window results
 
# If no window centers found, just display orginal road image
else:
    output = np.array(cv2.merge((warped,warped,warped)),np.uint8)

# Display the final results
plt.imshow(output)
plt.title('window fitting results')
plt.show()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容