Deep Learning Toolbox — 函数
- 按类别
- 字母顺序列表
图像深度学习
| trainingOptions
| Options for training deep learning neural network |
| trainNetwork
| Train neural network for deep learning |
| analyzeNetwork
| Analyze deep learning network architecture |
| alexnet
| Pretrained AlexNet convolutional neural network |
| vgg16
| Pretrained VGG-16 convolutional neural network |
| vgg19
| Pretrained VGG-19 convolutional neural network |
| squeezenet
| Pretrained SqueezeNet convolutional neural network |
| googlenet
| Pretrained GoogLeNet convolutional neural network |
| inceptionv3
| Pretrained Inception-v3 convolutional neural network |
| resnet18
| Pretrained ResNet-18 convolutional neural network |
| resnet50
| Pretrained ResNet-50 convolutional neural network |
| resnet101
| Pretrained ResNet-101 convolutional neural network |
| inceptionresnetv2
| Pretrained Inception-ResNet-v2 convolutional neural network |
| imageInputLayer
| Image input layer |
| convolution2dLayer
| 2-D convolutional layer |
| fullyConnectedLayer
| Fully connected layer |
| reluLayer
| Rectified Linear Unit (ReLU) layer |
| leakyReluLayer
| Leaky Rectified Linear Unit (ReLU) layer |
| clippedReluLayer
| Clipped Rectified Linear Unit (ReLU) layer |
| batchNormalizationLayer
| Batch normalization layer |
| CrossChannelNormalizationLayer
| Channel-wise local response normalization layer |
| dropoutLayer
| Dropout layer |
| averagePooling2dLayer
| Average pooling layer |
| maxPooling2dLayer
| Max pooling layer |
| maxUnpooling2dLayer
| Max unpooling layer |
| additionLayer
| Addition layer |
| depthConcatenationLayer
| Depth concatenation layer |
| softmaxLayer
| Softmax layer |
| transposedConv2dLayer
| Transposed 2-D convolution layer |
| classificationLayer
| Classification output layer |
| regressionLayer
| Create a regression output layer |
| augmentedImageDatastore
| Transform batches to augment image data |
| imageDataAugmenter
| Configure image data augmentation |
| augment
| Apply identical random transformations to multiple images |
| layerGraph
| Graph of network layers for deep learning |
| plot
| Plot neural network layer graph |
| addLayers
| Add layers to layer graph |
| removeLayers
| Remove layers from layer graph |
| replaceLayer
| Replace layer in layer graph |
| connectLayers
| Connect layers in layer graph |
| disconnectLayers
| Disconnect layers in layer graph |
| DAGNetwork
| Directed acyclic graph (DAG) network for deep learning |
| classify
| Classify data using a trained deep learning neural network |
| activations
| Compute convolutional neural network layer activations |
| predict
| Predict responses using a trained deep learning neural network |
| confusionchart
| Create confusion matrix chart for classification problem |
| sortClasses
| Sort classes of confusion matrix chart |
时序、序列和文本深度学习
| trainingOptions
| Options for training deep learning neural network |
| trainNetwork
| Train neural network for deep learning |
| analyzeNetwork
| Analyze deep learning network architecture |
| sequenceInputLayer
| Sequence input layer |
| lstmLayer
| Long short-term memory (LSTM) layer |
| bilstmLayer
| Bidirectional long short-term memory (BiLSTM) layer |
| fullyConnectedLayer
| Fully connected layer |
| reluLayer
| Rectified Linear Unit (ReLU) layer |
| leakyReluLayer
| Leaky Rectified Linear Unit (ReLU) layer |
| clippedReluLayer
| Clipped Rectified Linear Unit (ReLU) layer |
| dropoutLayer
| Dropout layer |
| softmaxLayer
| Softmax layer |
| classificationLayer
| Classification output layer |
| regressionLayer
| Create a regression output layer |
| predict
| Predict responses using a trained deep learning neural network |
| classify
| Classify data using a trained deep learning neural network |
| predictAndUpdateState
| Predict responses using a trained recurrent neural network and update the network state |
| classifyAndUpdateState
| Classify data using a trained recurrent neural network and update the network state |
| resetState
| Reset the state of a recurrent neural network |
| confusionchart
| Create confusion matrix chart for classification problem |
| sortClasses
| Sort classes of confusion matrix chart |
深度学习调整和可视化
| analyzeNetwork
| Analyze deep learning network architecture |
| plot
| Plot neural network layer graph |
| trainingOptions
| Options for training deep learning neural network |
| trainNetwork
| Train neural network for deep learning |
| activations
| Compute convolutional neural network layer activations |
| predict
| Predict responses using a trained deep learning neural network |
| classify
| Classify data using a trained deep learning neural network |
| predictAndUpdateState
| Predict responses using a trained recurrent neural network and update the network state |
| classifyAndUpdateState
| Classify data using a trained recurrent neural network and update the network state |
| resetState
| Reset the state of a recurrent neural network |
| deepDreamImage
| Visualize network features using deep dream |
| confusionchart
| Create confusion matrix chart for classification problem |
| sortClasses
| Sort classes of confusion matrix chart |
深度学习导入、导出和自定义
| importKerasNetwork
| Import a pretrained Keras network and weights |
| importKerasLayers
| Import layers from Keras network |
| importCaffeNetwork
| Import pretrained convolutional neural network models from Caffe |
| importCaffeLayers
| Import convolutional neural network layers from Caffe |
| importONNXNetwork
| Import pretrained ONNX network |
| importONNXLayers
| Import layers from ONNX network |
| exportONNXNetwork
| Export network to ONNX model format |
| findPlaceholderLayers
| Find placeholder layers in network architecture imported from Keras or ONNX |
| replaceLayer
| Replace layer in layer graph |
| assembleNetwork
| Assemble deep learning network from pretrained layers |
| PlaceholderLayer
| Layer replacing an unsupported Keras or ONNX layer |
| setLearnRateFactor
| Set learn rate factor of layer learnable parameter |
| setL2Factor
| Set L2 regularization factor of layer learnable parameter |
| getLearnRateFactor
| Get learn rate factor of layer learnable parameter |
| getL2Factor
| Get L2 regularization factor of layer learnable parameter |
| checkLayer
| Check validity of custom layer |
| MiniBatchable
| Add mini-batch support to datastore |
| BackgroundDispatchable
| Add prefetch reading support to datastore |
| PartitionableByIndex
| Add parallelization support to datastore |
| Shuffleable
| Add shuffling support to datastore |
函数逼近和聚类
函数逼近和非线性回归
| nnstart
| Neural network getting started GUI |
| view
| View neural network |
| fitnet
| Function fitting neural network |
| feedforwardnet
| Feedforward neural network |
| cascadeforwardnet
| Cascade-forward neural network |
| train
| Train shallow neural network |
| trainlm
| Levenberg-Marquardt backpropagation |
| trainbr
| Bayesian regularization backpropagation |
| trainscg
| Scaled conjugate gradient backpropagation |
| trainrp
| Resilient backpropagation |
| mse
| Mean squared normalized error performance function |
| regression
| Linear regression |
| ploterrhist
| Plot error histogram |
| plotfit
| Plot function fit |
| plotperform
| Plot network performance |
| plotregression
| Plot linear regression |
| plottrainstate
| Plot training state values |
| genFunction
| Generate MATLAB function for simulating neural network |
模式识别
| 自编码器
| Autoencoder class |
| nnstart
| Neural network getting started GUI |
| view
| View neural network |
| trainAutoencoder
| Train an autoencoder |
| trainSoftmaxLayer
| Train a softmax layer for classification |
| decode
| Decode encoded data |
| encode
| Encode input data |
| predict
| Reconstruct the inputs using trained autoencoder |
| stack
| Stack encoders from several autoencoders together |
| network
| Convert Autoencoder object into network object |
| patternnet
| Pattern recognition network |
| lvqnet
| Learning vector quantization neural network |
| train
| Train shallow neural network |
| trainlm
| Levenberg-Marquardt backpropagation |
| trainbr
| Bayesian regularization backpropagation |
| trainscg
| Scaled conjugate gradient backpropagation |
| trainrp
| Resilient backpropagation |
| mse
| Mean squared normalized error performance function |
| regression
| Linear regression |
| roc
| Receiver operating characteristic |
| plotconfusion
| Plot classification confusion matrix |
| ploterrhist
| Plot error histogram |
| plotperform
| Plot network performance |
| plotregression
| Plot linear regression |
| plotroc
| Plot receiver operating characteristic |
| plottrainstate
| Plot training state values |
| crossentropy
| Neural network performance |
| genFunction
| Generate MATLAB function for simulating neural network |
聚类
自组织映射
| nnstart
| Neural network getting started GUI |
| view
| View neural network |
| selforgmap
| Self-organizing map |
| train
| Train shallow neural network |
| plotsomhits
| Plot self-organizing map sample hits |
| plotsomnc
| Plot self-organizing map neighbor connections |
| plotsomnd
| Plot self-organizing map neighbor distances |
| plotsomplanes
| Plot self-organizing map weight planes |
| plotsompos
| Plot self-organizing map weight positions |
| plotsomtop
| Plot self-organizing map topology |
| genFunction
| Generate MATLAB function for simulating neural network |
竞争层
| competlayer
| Competitive layer |
| view
| View neural network |
| train
| Train shallow neural network |
| trainru
| Unsupervised random order weight/bias training |
| learnk
| Kohonen weight learning function |
| learncon
| Conscience bias learning function |
| genFunction
| Generate MATLAB function for simulating neural network |
自编码器
| 自编码器
| Autoencoder class |
| trainAutoencoder
| Train an autoencoder |
| trainSoftmaxLayer
| Train a softmax layer for classification |
| decode
| Decode encoded data |
| encode
| Encode input data |
| generateFunction
| Generate a MATLAB function to run the autoencoder |
| generateSimulink
| Generate a Simulink model for the autoencoder |
| network
| Convert Autoencoder object into network object |
| plotWeights
| Plot a visualization of the weights for the encoder of an autoencoder |
| predict
| Reconstruct the inputs using trained autoencoder |
| stack
| Stack encoders from several autoencoders together |
| view
| View autoencoder |
定义浅层神经网络架构
| network
| Create custom neural network |
时序和控制系统
时序和动态系统
使用 NARX 网络和时延网络进行建模和预测
| nnstart
| Neural network getting started GUI |
| view
| View neural network |
| timedelaynet
| Time delay neural network |
| narxnet
| Nonlinear autoregressive neural network with external input |
| narnet
| Nonlinear autoregressive neural network |
| layrecnet
| Layer recurrent neural network |
| distdelaynet
| Distributed delay network |
| train
| Train shallow neural network |
| gensim
| Generate Simulink block for neural network simulation |
| adddelay
| Add delay to neural network response |
| removedelay
| Remove delay to neural network’s response |
| closeloop
| Convert neural network open-loop feedback to closed loop |
| openloop
| Convert neural network closed-loop feedback to open loop |
| ploterrhist
| Plot error histogram |
| plotinerrcorr
| Plot input to error time-series cross-correlation |
| plotregression
| Plot linear regression |
| plotresponse
| Plot dynamic network time series response |
| ploterrcorr
| Plot autocorrelation of error time series |
| genFunction
| Generate MATLAB function for simulating neural network |
创建 Simulink 模型
| gensim
| Generate Simulink block for neural network simulation |
| setsiminit
| Set neural network Simulink block initial conditions |
| getsiminit
| Get Simulink neural network block initial input and layer delays states |
| sim2nndata
| Convert Simulink time series to neural network data |
| nndata2sim
| Convert neural network data to Simulink time series |
<iframe id="doc_survey" src="https://ww2.mathworks.cn/programs/bounce_hub_help.html?s_cid=Help_Topic_Survey&surveyParams=https://ww2.mathworks.cn/help/deeplearning/referencelist.html?type=function&s_cid=doc_ftr-G11N-zh_CN" style="box-sizing: border-box; transition: none 0s ease 0s !important; width: 310px; height: 167px; margin-top: 20px; border: 1px solid rgb(230, 230, 230); font-size: 14px !important;"></iframe>