数据结构与算法学习-最小生成树

连通图的⽣生成树定义: 所谓⼀一个连通图的⽣生成树是⼀一个极⼩小的连通⼦子图,它含有图中全部的n个顶点,但只⾜足以构成⼀一颗树的n-1条边.
定义解读: 满⾜足以下3个条件则为连通图的⽣生成树:

    1. 图是连通图;
    1. 图中包含了了N个顶点;
    1. 图中边的数量量等于N-1条边.

今天学习最小生成树的两种算法:普里姆【Prim】算法和克鲁斯卡尔【Kruskal】算法

一、Prim算法

算法思路:

    1. 定义2个数组; adjvex ⽤用来保存相关顶点下标; lowcost 保存顶点之间的权值
    1. 初始化2个数组, 从v0开始寻找最⼩小⽣生成树, 默认v0是最⼩小⽣生成树上第⼀一个顶点
    1. 循环lowcost 数组,根据权值,找到顶点 k;
    1. 更更新lowcost 数组
    1. 循环所有顶点,找到与顶点k 有关系的顶点. 并更更新lowcost 数组与adjvex 数组
      代码实现:
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXEDGE 20
#define MAXVEX 20
#define INFINITYC 65535

typedef int Status;    /* Status是函数的类型,其值是函数结果状态代码,如OK等 */

typedef struct
{
    int arc[MAXVEX][MAXVEX];
    int numVertexes, numEdges;
}MGraph;


/*9.1 创建邻接矩阵*/
void CreateMGraph(MGraph *G)/* 构件图 */
{
    int i, j;
    
    /* printf("请输入边数和顶点数:"); */
    G->numEdges=15;
    G->numVertexes=9;
    
    for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
    {
        for ( j = 0; j < G->numVertexes; j++)
        {
            if (i==j)
                G->arc[i][j]=0;
            else
                G->arc[i][j] = G->arc[j][i] = INFINITYC;
        }
    }
    
    G->arc[0][1]=10;
    G->arc[0][5]=11;
    G->arc[1][2]=18;
    G->arc[1][8]=12;
    G->arc[1][6]=16;
    G->arc[2][8]=8;
    G->arc[2][3]=22;
    G->arc[3][8]=21;
    G->arc[3][6]=24;
    G->arc[3][7]=16;
    G->arc[3][4]=20;
    G->arc[4][7]=7;
    G->arc[4][5]=26;
    G->arc[5][6]=17;
    G->arc[6][7]=19;
    
    for(i = 0; i < G->numVertexes; i++)
    {
        for(j = i; j < G->numVertexes; j++)
        {
            G->arc[j][i] =G->arc[i][j];
        }
    }
    
}

/* Prim算法生成最小生成树 */
void MiniSpanTree_Prim(MGraph G)
{
    int min, i, j, k;
    int sum = 0;
    /* 保存相关顶点下标 */
    int adjvex[MAXVEX];
    /* 保存相关顶点间边的权值 */
    int lowcost[MAXVEX];
    
    /* 初始化第一个权值为0,即v0加入生成树 */
    /* lowcost的值为0,在这里就是此下标的顶点已经加入生成树 */
    lowcost[0] = 0;
    
    /* 初始化第一个顶点下标为0 */
    adjvex[0] = 0;
    
    //1. 初始化
    for(i = 1; i < G.numVertexes; i++)    /* 循环除下标为0外的全部顶点 */
    {
        lowcost[i] = G.arc[0][i];    /* 将v0顶点与之有边的权值存入数组 */
        adjvex[i] = 0;                    /* 初始化都为v0的下标 */
    }
    
    //2. 循环除了下标为0以外的全部顶点, 找到lowcost数组中最小的顶点k
    for(i = 1; i < G.numVertexes; i++)
    {
        /* 初始化最小权值为∞, */
        /* 通常设置为不可能的大数字如32767、65535等 */
        min = INFINITYC;
        
        j = 1;k = 0;
        while(j < G.numVertexes)    /* 循环全部顶点 */
        {
            /* 如果权值不为0且权值小于min */
            if(lowcost[j]!=0 && lowcost[j] < min)
            {
                /* 则让当前权值成为最小值,更新min */
                min = lowcost[j];
                /* 将当前最小值的下标存入k */
                k = j;
            }
            j++;
        }
        
        /* 打印当前顶点边中权值最小的边 */
        printf("(V%d, V%d)=%d\n", adjvex[k], k ,G.arc[adjvex[k]][k]);
        sum+=G.arc[adjvex[k]][k];
        
        /* 3.将当前顶点的权值设置为0,表示此顶点已经完成任务 */
        lowcost[k] = 0;
        
        /* 循环所有顶点,找到与顶点k 相连接的顶点
         1. 与顶点k 之间连接;
         2. 该结点没有被加入到生成树;
         3. 顶点k 与 顶点j 之间的权值 < 顶点j 与其他顶点的权值,则更新lowcost 数组;
         
         */
        for(j = 1; j < G.numVertexes; j++)
        {
            /* 如果下标为k顶点各边权值小于此前这些顶点未被加入生成树权值 */
            if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j])
            {
                /* 将较小的权值存入lowcost相应位置 */
                lowcost[j] = G.arc[k][j];
                /* 将下标为k的顶点存入adjvex */
                adjvex[j] = k;
            }
        }
    }
    printf("sum = %d\n",sum);
}

二、Kruskal算法

算法思路:

    1. 将邻接矩阵 转化成 边表数组;
    1. 对边表数组根据权值按照从⼩小到⼤大的顺序排序;
    1. 遍历所有的边, 通过parent 数组找到边的连接信息; 避免闭环问题;
    1. 如果不不存在闭环问题,则加⼊入到最⼩小⽣生成树中. 并且修改parent 数组;
      代码实现:
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 20
#define MAXVEX 20
#define INFINITYC 65535

typedef int Status;
typedef struct
{
    int arc[MAXVEX][MAXVEX];
    int numVertexes, numEdges;
}MGraph;

/* 对边集数组Edge结构的定义 */
typedef struct
{
    int begin;
    int end;
    int weight;
}Edge ;

/*9.1 创建邻接矩阵*/
void CreateMGraph(MGraph *G)
{
    int i, j;
    
    /* printf("请输入边数和顶点数:"); */
    G->numEdges=15;
    G->numVertexes=9;
    
    for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
    {
        for ( j = 0; j < G->numVertexes; j++)
        {
            if (i==j)
                G->arc[i][j]=0;
            else
                G->arc[i][j] = G->arc[j][i] = INFINITYC;
        }
    }
    
    G->arc[0][1]=10;
    G->arc[0][5]=11;
    G->arc[1][2]=18;
    G->arc[1][8]=12;
    G->arc[1][6]=16;
    G->arc[2][8]=8;
    G->arc[2][3]=22;
    G->arc[3][8]=21;
    G->arc[3][6]=24;
    G->arc[3][7]=16;
    G->arc[3][4]=20;
    G->arc[4][7]=7;
    G->arc[4][5]=26;
    G->arc[5][6]=17;
    G->arc[6][7]=19;
    
    for(i = 0; i < G->numVertexes; i++)
    {
        for(j = i; j < G->numVertexes; j++)
        {
            G->arc[j][i] =G->arc[i][j];
        }
    }
    
}


/* 交换权值以及头和尾 */
void Swapn(Edge *edges,int i, int j)
{
    int tempValue;
    
    //交换edges[i].begin 和 edges[j].begin 的值
    tempValue = edges[i].begin;
    edges[i].begin = edges[j].begin;
    edges[j].begin = tempValue;
    
    //交换edges[i].end 和 edges[j].end 的值
    tempValue = edges[i].end;
    edges[i].end = edges[j].end;
    edges[j].end = tempValue;
    
    //交换edges[i].weight 和 edges[j].weight 的值
    tempValue = edges[i].weight;
    edges[i].weight = edges[j].weight;
    edges[j].weight = tempValue;
}

/* 对权值进行排序 */
void sort(Edge edges[],MGraph *G)
{
    //对权值进行排序(从小到大)
    int i, j;
    for ( i = 0; i < G->numEdges; i++)
    {
        for ( j = i + 1; j < G->numEdges; j++)
        {
            if (edges[i].weight > edges[j].weight)
            {
                Swapn(edges, i, j);
            }
        }
    }
    
    printf("边集数组根据权值排序之后的为:\n");
    for (i = 0; i < G->numEdges; i++)
    {
        printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
    }
    
}

/* 查找连线顶点的尾部下标 */
//根据顶点f以及parent 数组,可以找到当前顶点的尾部下标; 帮助我们判断2点之间是否存在闭环问题;
int Find(int *parent, int f)
{
    while ( parent[f] > 0)
    {
        f = parent[f];
    }
    return f;
}

/* 生成最小生成树 */
void MiniSpanTree_Kruskal(MGraph G)
{
    int i, j, n, m;
    int sum = 0;
    int k = 0;
    /* 定义一数组用来判断边与边是否形成环路
     用来记录顶点间的连接关系. 通过它来防止最小生成树产生闭环;*/
    
    int parent[MAXVEX];
    /* 定义边集数组,edge的结构为begin,end,weight,均为整型 */
    Edge edges[MAXEDGE];
    
    /*1. 用来构建边集数组*/
    for ( i = 0; i < G.numVertexes-1; i++)
    {
        for (j = i + 1; j < G.numVertexes; j++)
        {
            //如果当前路径权值 != ∞
            if (G.arc[i][j]<INFINITYC)
            {
                //将路径对应的begin,end,weight 存储到edges 边集数组中.
                edges[k].begin = i;
                edges[k].end = j;
                edges[k].weight = G.arc[i][j];
                
                //边集数组计算器k++;
                k++;
            }
        }
    }
    
    //2. 对边集数组排序
    sort(edges, &G);
    
    
    //3.初始化parent 数组为0. 9个顶点;
    // for (i = 0; i < G.numVertexes; i++)
    for (i = 0; i < MAXVEX; i++)
        parent[i] = 0;
    
    //4. 计算最小生成树
    printf("打印最小生成树:\n");
    /* 循环每一条边 G.numEdges 有15条边*/
    for (i = 0; i < G.numEdges; i++)
    {
        //获取begin,end 在parent 数组中的信息;
        //如果n = m ,将begin 和 end 连接,就会产生闭合的环.
        n = Find(parent,edges[i].begin);
        m = Find(parent,edges[i].end);
        //printf("n = %d,m = %d\n",n,m);
        
        /* 假如n与m不等,说明此边没有与现有的生成树形成环路 */
        if (n != m)
        {
            /* 将此边的结尾顶点放入下标为起点的parent中。 */
            /* 表示此顶点已经在生成树集合中 */
            parent[n] = m;
            
            /*打印最小生成树路径*/
            printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
            sum += edges[i].weight;
        }
    }
    
    printf("sum = %d\n",sum);
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343