Spark 3.0 主要feature

SPARK-11215 Multiple columns support added to various Transformers: StringIndexer

SPARK-11150 Implement Dynamic Partition Pruning

SPARK-13677 Support Tree-Based Feature Transformation

SPARK-16692 Add MultilabelClassificationEvaluator

SPARK-19591 Add sample weights to decision trees

SPARK-19712 Pushing Left Semi and Left Anti joins through Project, Aggregate, Window, Union etc.

SPARK-19827 R API for Power Iteration Clustering

SPARK-20286 Improve logic for timing out executors in dynamic allocation

SPARK-20636 Eliminate unnecessary shuffle with adjacent Window expressions

SPARK-22148 Acquire new executors to avoid hang because of blacklisting

SPARK-22796 Multiple columns support added to various Transformers: PySpark QuantileDiscretizer

SPARK-23128 A new approach to do adaptive execution in Spark SQL

SPARK-23155 Apply custom log URL pattern for executor log URLs in SHS

SPARK-23539 Add support for Kafka headers

SPARK-23674 Add Spark ML Listener for Tracking ML Pipeline Status

SPARK-23710 Upgrade the built-in Hive to 2.3.5 for hadoop-3.2

SPARK-24333 Add fit with validation set to Gradient Boosted Trees: Python API

SPARK-24417 Build and Run Spark on JDK11

SPARK-24615 Accelerator-aware task scheduling for Spark

SPARK-24920 Allow sharing Netty's memory pool allocators

SPARK-25250 Fix race condition with tasks running when new attempt for same stage is created leads to other task in the next attempt running on the same partition id retry multiple times

SPARK-25341 Support rolling back a shuffle map stage and re-generate the shuffle files

SPARK-25348 Data source for binary files

SPARK-25390 data source V2 API refactoring

SPARK-25501 Add Kafka delegation token support

SPARK-25603 Generalize Nested Column Pruning

SPARK-26132 Remove support for Scala 2.11 in Spark 3.0.0

SPARK-26215 define reserved keywords after SQL standard

SPARK-26412 Allow Pandas UDF to take an iterator of pd.DataFrames

SPARK-26651 Use Proleptic Gregorian calendar

SPARK-26759 Arrow optimization in SparkR's interoperability

SPARK-26848 Introduce new option to Kafka source: offset by timestamp (starting/ending)

SPARK-27064 create StreamingWrite at the beginning of streaming execution

SPARK-27119 Do not infer schema when reading Hive serde table with native data source

SPARK-27225 Implement join strategy hints

SPARK-27240 Use pandas DataFrame for struct type argument in Scalar Pandas UDF

SPARK-27338 Fix deadlock between TaskMemoryManager and UnsafeExternalSorter$SpillableIterator

SPARK-27396 Public APIs for extended Columnar Processing Support

SPARK-27463 Support Dataframe Cogroup via Pandas UDFs

SPARK-27589 Re-implement file sources with data source V2 API

SPARK-27677 Disk-persisted RDD blocks served by shuffle service, and ignored for Dynamic Allocation

SPARK-27699 Partially push down disjunctive predicated in Parquet/ORC

SPARK-27763 Port test cases from PostgreSQL to Spark SQL

SPARK-27884 Deprecate Python 2 support

SPARK-27921 Convert applicable *.sql tests into UDF integrated test base

SPARK-27963 Allow dynamic allocation without an external shuffle service

SPARK-28177 Adjust post shuffle partition number in adaptive execution

SPARK-28199 Move Trigger implementations to Triggers.scala and avoid exposing these to the end users

SPARK-28372 Document Spark WEB UI

SPARK-28399 RobustScaler feature transformer

SPARK-28426 Metadata Handling in Thrift Server

SPARK-28588 Build a SQL reference doc

SPARK-28608 Improve test coverage of ThriftServer

SPARK-28753 Dynamically reuse subqueries in AQE

SPARK-28855 Remove outdated Experimental, Evolving annotations

SPARK-29345 Add an API that allows a user to define and observe arbitrary metrics on streaming queries

SPARK-25908 SPARK-28980 Remove deprecated items since <= 2.2.0

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,367评论 6 512
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,959评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,750评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,226评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,252评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,975评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,592评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,497评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,027评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,147评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,274评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,953评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,623评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,143评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,260评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,607评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,271评论 2 358

推荐阅读更多精彩内容