#python入门5#高级特性-迭代器

可以直接作用于for循环的数据类型有以下几种:

  1. 一类是集合数据类型,如list、tuple、dict、set、str等
  2. 一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。
可以使用isinstance()判断一个对象是否是Iterable对象:

  >>> from collections import Iterable
  >>> isinstance([], Iterable)
  True

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

  >>>from collections import Iterator
  >>>isinstance((x for x in range(10)), Iterator)
  True
  >>>isinstance([], Iterator)
  True

注意:
[x for x in range(10)] : 列表生成式
(x for x in range(10)) : 生成器

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
把list、dict、str等Iterable变成Iterator可以使用iter()函数

  >>> isinstance(iter([]), Iterator)
  True

你可能会问,为什么list、dict、str等数据类型不是Iterator?

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的

小结:

  1. 凡是可作用于for循环的对象都是Iterable类型;
  2. 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
  3. 集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
  4. Python的for循环本质上就是通过不断调用next()函数实现的。
  for x in [1, 2, 3, 4, 5]:
      pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
     try: 
          # 获得下一个值: 
          x = next(it) 
      except StopIteration:  
          # 遇到StopIteration就退出循环 
          break
学习来源于廖雪峰教程
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容