最简便的爬虫效率提升方法

昨晚发现放在腾讯云主机上通过crontab定时执行用以爬去斗鱼分类页面数据的爬虫在执行的时候速度特别慢,于是想通过多线程来提高效率。
打开浏览器,键入关键字“python 多线程”,发现大多数内容都是使用threading、Queue这些看起来很笨重的实例。不过直到multiprocessing.dummy出现在眼前之后,一切都变得辣么简单。

multiprocessing.dummy 大杀器

multiprocessing.dummy 是multiprocessing的一个子库,二者的不同之处就是前者应用于线程后者主要应用于进程,而它们实现并行化操作的关键则是map()函数。
以我的两段代码为例:

def insert_info():
    '''
    通过遍历游戏分类页面获取所有直播间
    '''
    session = requests.session()
    pagecontent = session.get(Directory_url).text
    pagesoup = BeautifulSoup(pagecontent)
    games = pagesoup.select('a')
    col.drop()
    for game in games:
        links = game["href"]
        Qurystr = "/?page=1&isAjax=1"
        gameurl = HOST + links + Qurystr
        gamedata = session.get(gameurl).text
        flag = get_roominfo(gamedata)
    aggregateData()

上边这段是之前运行在云主机速度真的跟爬似的代码,通过Directory_url这个地址,获取到页面中所有的<a></a>标签,并获取到它们的'href',再逐条获取每个链接中的内容,获取想要的东西,最终完成入库工作。所有的一切都看似按部就班哈。在我的笔记本上做测试,完成所有2032条数据的爬取共耗时<strong>140.5s</strong>(好特么慢=。=)。

但是在加入multiprocessing.dummy之后,真的是有飞一般的感觉:

from multiprocessing.dummy import Pool

pool = Pool()

def insert_info():
    '''
    通过遍历游戏分类页面获取所有直播间
    '''
    session = requests.session()
    pagecontent = session.get(Directory_url).text
    pagesoup = BeautifulSoup(pagecontent)
    games = pagesoup.select('a')
    gameurl = [HOST + url["href"] + "/?page=1&isAjax=1" for url in games]
    col.drop()
    g = lambda link: session.get(link).text
    gamedata = pool.map(g, gameurl)
    ginfo = lambda data: get_roominfo(data)
    pool.map(ginfo, gamedata)
    aggregateData()

同样通过Directory_url这一地址获取页面中所有标签<a></a>,然后通过pool.map(g, gameurl)完成'href'值的获取,最后再用一次pool.map(ginfo,gamedata)完成所有页面内容的提取和入库。再一次测试,只需要<strong>33.1s</strong>即可完成。

所以说,如果你的爬虫也要处理类似的过程,不妨尝试一下multiprocessing。

更多详细信息可以参考官方文档

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容