现代OpenGL学习-06

原文地址

写这些的目的是为了做自己的学习笔记,建立自己的知识库。

概念

diffuse 漫反射

ambient 环境; 周围的,包围着的; 产生轻松氛围的;

specular reflection 镜面反射光

directional lights  定向光源

spotlights  点光源

attenuation 变薄; 弄细; 稀薄化; 减少;

Phong reflection model:如下图片解释的够清楚了吧

环境光+漫反射+高光 环境光觉得更应该理解为固有色;


颜色理论

Using only three colors of light, we can make eight different colors: red, green, blue, yellow, cyan, magenta, black and white.

RGB三色光满强度,在白纸上产生8种颜色如图

颜色1

But what about the other colors, like orange? Well, if you take the green light and make it half as bright as it used to be, you would see the image below.

绿光亮度减半后


Lowering the intensity (a.k.a. brightness) of the green has made a few new colors: dark green, sky blue, orange, and pink.

降低绿光强度(亮度),产生了新的颜色:深绿、天蓝、粉红;


Absorption & Reflection Of Color

颜色吸收与反射





If you look at the RGB value of each color, you will notice that the values represent reflectance. (0,0,0) is black, which means reflect none of the light. (1,1,1) is white, which means reflect all of the light. (1,0,0) is red, which means only reflect the red. Cyan is (0,1,1), which means only reflect blue and green. The RGB color of a surface represents how light is absorbed and reflected by that surface.

Calculating the reflected color is simple. The basic formula is:

intensities × surface color = reflected intensities

cyan light × magenta surface = blue light

线性代数计算

(0, 1, 1)  × (1, 0, 1)      = (0, 0, 1);


Angle of Incidence( 入射角)

决定了表面(看起来)的亮度

If we represent the brightness as a single number, where 0.0 is completely dark and 1.0 is maximum brightness, then it's easy to calculate based on the cosine of the AoI. The formula is brightness = cos(AoI). Let's have a look at the cosine of some angles, just to prove that it works:

cos(  0°) =  1.00 (100% of maximum brightness)

cos(  5°) =  0.98 ( 98% of maximum brightness)

cos( 45°) =  0.71 ( 71% of maximum brightness)

cos( 85°) =  0.09 (  9% of maximum brightness)

cos( 90°) =  0.00 (Completely dark)

cos(100°) = -0.17 (Completely dark. Negative value means light is hitting the back side)

Once we have a brightness value between 0 and 1, we can multiply it by the intensities of the reflected light to get the final color for the pixel. Here is an example with cyan light:

brightness × light intensities = final color for pixel

1.0 × (0, 1, 1) = (0, 1, 1) (cyan, unchanged)

0.5 × (0, 1, 1) = (0, 0.5, 0.5) (turquoise, which is darkened cyan)

0.0 × (0, 1, 1) = (0, 0, 0) (black)

This "brightness" value between 0 and 1 is sometimes called the "diffuse coefficient."

Surface Normals(表面法线)

要计算AoI入射光夹角就必须知道表面法线和入射光向量;



N = the surface normal vector

L = a vector from the surface to the light source

θ = the angle of incidence

The vector from the surface to the light source, L, can be calculated with vector subtraction, like so:

L=lightPosition−surfacePosition

Calculating The Angle Between Two Vectors: The Dot Product

dot(v1,v2) == length(v1)*length(v2)*cos(angle)

dot(v1,v2)/(length(v1)*length(v2)) == cos(angle)

acos(dot(v1,v2)/(length(v1)*length(v2))) == angle

float brightness = dot(normal, surfaceToLight) / (length(surfaceToLight) * length(normal));

Matrix Transformation Of Normals

法线的矩阵变换:

法线通常是存在于模型空间的,也就是说是相对于未做任何变换的定点坐标的;而计算时向量是经过了positioned/scaled/rotated这些变换的世界坐标中;

So far, we've only used matrices to transform coordinates. The problem is that normals are not coordinates, they are unit vectors representing directions. Rotation transformations are fine, because the rotating a unit vector results in another unit vector, but scaling or translating a normal will result in an incorrect normal. The solution is to multiply the normals by a different matrix – one that has the translation and scaling parts fixed.

之前只是对坐标用矩阵变换,对向量做矩阵变换时旋转没影响但位移和缩放时就会出问题;

Removing the translation part of a 4x4 matrix is simple: we just remove the 4th column and row, converting it to a 3x3 matrix.

mat3 normalMatrix = transpose(inverse(mat3(model)));

vec3 transformedNormal = normalize(normalMatrix * normal);


#version 150

uniform mat4 camera;

uniform mat4 model;

in vec3 vert;

in vec2 vertTexCoord;

in vec3 vertNormal;

out vec3 fragVert;

out vec2 fragTexCoord;

out vec3 fragNormal;

void main() {

// Pass some variables to the fragment shader

fragTexCoord = vertTexCoord;

fragNormal = vertNormal;

fragVert = vert;

// Apply all matrix transformations to vert

gl_Position = camera * model * vec4(vert, 1);

}


#version 150

uniform mat4 model;

uniform sampler2D tex;

uniform struct Light {

vec3 position;

vec3 intensities; //a.k.a the color of the light

} light;

in vec2 fragTexCoord;

in vec3 fragNormal;

in vec3 fragVert;

out vec4 finalColor;

void main() {

//calculate normal in world coordinates

mat3 normalMatrix = transpose(inverse(mat3(model)));

vec3 normal = normalize(normalMatrix * fragNormal);

//calculate the location of this fragment (pixel) in world coordinates

vec3 fragPosition = vec3(model * vec4(fragVert, 1));

//calculate the vector from this pixels surface to the light source

vec3 surfaceToLight = light.position - fragPosition;

//calculate the cosine of the angle of incidence

float brightness = dot(normal, surfaceToLight) / (length(surfaceToLight) * length(normal));

brightness = clamp(brightness, 0, 1);

//calculate final color of the pixel, based on:

// 1. The angle of incidence: brightness

// 2. The color/intensities of the light: light.intensities

// 3. The texture and texture coord: texture(tex, fragTexCoord)

vec4 surfaceColor = texture(tex, fragTexCoord);

finalColor = vec4(brightness * light.intensities * surfaceColor.rgb, surfaceColor.a);

}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,366评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,521评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,689评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,925评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,942评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,727评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,447评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,349评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,820评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,990评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,127评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,812评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,471评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,017评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,142评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,388评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,066评论 2 355

推荐阅读更多精彩内容