机器学习-(1)概论

基于目前我的学习,给出我所认为比较重要的点吧,不喜勿喷


1 统计学习

统计学习方法基于数据来说,主要分为监督学习,半监督学习,无监督学习,及强化学习。

实现统计学习方法步骤如下:

    (1)得到一个有限的训练数据集合

    (2)确定包含所有可能的模型的假设空间,即学习模型的集合

    (3)确定模型选择的准则,即学习的策略

    (4)实现求解最优模型的算法,即学习的算法

    (5)通过学习方法选择最优模型

    (6)利用学习的最优模型对新数据进行预测和分析

统计学习三要素:模型,策略,算法

    (1)模型:在监督学习过程中,模型就是所要学习的条件概率分布或决策函数,模型的假设空间包含所有可能的条件概率分布或决策函数,如P(Y|X)或y=f(x)

    (2)策略:按照什么样的准则学习,从假设空间中选取最优模型。损失函数可以度量模型一次预测的好坏,风险函数可以度量平均意义下模型预测的好坏。损失函数:输出的预测值f(x)与真实值Y之间的差异,记做L(Y,f(X)).常见损失函数有以下几种:

      风险函数/期望损失:理论上模型f(X)关于联合分布P(X,Y)的平均意义下的损失


    经验风险/经验损失:模型f(X)关于训练数据集的平均损失


    经验风险最小化:

                                                    min(Remp)

    结构风险最小化:

       解决经验风险最小化产生的“过拟合”现象,在经验风险上加上表示模型复杂度的正则化项或者惩罚项


    则结构风险最小化为:

                                                        min(Rsrm)

    (3)算法:学习模型的具体计算方法,求解最优模型的方法

2 监督学习

监督学习从训练数据集合中学习模型,对测试数据进行预测,训练数据由输入与输出对组成。训练集通常可以表示为T={(x1,y1),(x2,y2),(x3,y3),...,(xn,yn)}.

下面主要介绍监督学习中的几个概念

    (1)输入空间:监督学习中输入所有可能取值的集合

    (2)特征空间:特征空间与输入空间可以在同一空间,也可以不在,特征空间的每一维度对应于一个特征

    (3)输出空间:监督学习中输出所有可能取值的集合

    (4)联合概率分布:统计学习假设数据存在一定的统计规律,X和Y具有联合概率分布的假设就是监督学习关于数据的基本假设

    (5)假设空间:模型属于由输入空间到输出空间的映射的集合

3 模型评估与模型选择

(1)泛化能力:学习方法对未知数据的预测能力

(2)过拟合:指学习时选择的模型所包含的参数过多,以致于出现这一模型对已知数据预测的很好,但对位置数据预测的很差的现象

(3)常用防止过拟合的模型选择方法:正则化与交叉验证

    正则化:在经验风险上加一个正则化项或惩罚项,正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化值越大,正则化项可以是模型参数向量的范数,正则化的作用是选择经验风险与模型复杂度同时较小的模型                                         交叉验证:随机地将数据集切分成三部分:训练集,验证集,测试集,包括三种验证方法:简单交叉验证,S折交叉验证,留一交叉验证。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 文章作者:Tyan博客:noahsnail.com | CSDN | 简书 1. 统计学习方法概论 本文是统计学习...
    SnailTyan阅读 3,230评论 0 7
  • 以西瓜书为主线,以其他书籍作为参考进行补充,例如《统计学习方法》,《PRML》等 第一章 绪论 1.2 基本术语 ...
    danielAck阅读 4,504评论 0 6
  • https://developers.google.com/machine-learning/crash-cour...
    iOSDevLog阅读 2,654评论 1 11
  • 机器学习术语表 本术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义。 A A/B 测试 (...
    yalesaleng阅读 1,961评论 0 11
  • 1、雪落无声,我无限深情地陷落进你无垠的躯体。 捧起你莲样的眸子,盛进一种透明,有液体自眼角流出,那是谁误入处女湖...
    花开的时间阅读 262评论 0 0