bagging和boosting及Adaboost的推导

  • bagging: 对训练样本进行自助采样,产生若干个不同的子集,再从每个数据子集中训练出一个基学习器,再将这些基学习器进行结合。 Bagging主要降低方差,同时由于各轮学习器之间相互独立,因此可以并行运行
  • Boosting:boosting是一族可将弱学习器提升至强学习器的算法。先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的训练样本在后续受到更多关注,然后在基于调整后的样本分布来训练下一个学习器。如此重复进行,直至基学习器数目达到事先指定的值T,最后将这T个基学习器进行加权结合。Boosting主要降低偏差,每个弱学习器都有相应的权重,学习误差小的学习器有较大的权重。
    这里结合《机器学习》对Adaboost进行了详细的推导
image-20200407231847075.png
image-20200407231928352.png
image-20200407232004595.png

也有另一种推到方式:

机器学习笔记:AdaBoost 公式推导

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 8.1 个体与集成 集成学习是通过构建并结合多个学习器来完成任务。 集成学习的一般结构:一组"个体学习器"通过某种...
    D系鼎溜阅读 5,239评论 0 0
  • 当我们想要购买一个电脑时,我们不会仅仅听信销售员的一面之词就购买,因为一个人的意见是比较主观的,但是如果询问5个人...
    jieyao阅读 5,171评论 0 4
  • 集成学习 原理 《机器学习》周志华 8.1 个体与集成 集成学习(ensemble learning) 通过构建并...
    hxiaom阅读 4,712评论 0 2
  • 随机森林 1. 原理 随机森林属于Bagging的扩展变体 Bagging:有放回抽样,多数表决(分类)或简单平均...
    Manfestain阅读 4,053评论 0 0
  • 有时候我们要在java项目下写一个过滤器来实现某些功能,但是如果我们想在过滤器中通过某个bean查找数据库数据(f...
    穿山甲123阅读 8,393评论 0 0

友情链接更多精彩内容